Author: Rybnikov, V.
Paper Title Page
THPDP017 A Data Acquisition Middle Layer Server with Python Support for Linac Operation and Experiments Monitoring and Control 1330
 
  • V. Rybnikov, A. Sulc
    DESY, Hamburg, Germany
 
  This paper presents online anomaly detection on low-level radio frequency (LLRF) cavities running on FLASH/XFEL DAQ system*. The code is run by a DAQ Middle Layer (ML) server, which has on-line access to all collected data. The ML server executes a Python script that runs a pre-trained machine learning model on every shot in the FLASH/XFEL machine. We discuss the challenges associated with real-time anomaly detection due to high data rates generated by RF cavities, and introduce a DAQ system pipeline and algorithms used for online detection on arbitrary channels in our control system. The system’s performance is evaluated using real data from operational RF cavities. We also focus on the DAQ monitor server’s features and its implementation.
*A. Aghababyan et al., ’Multi-Processor Based Fast Data Acquisition for a Free Electron Laser and Experiments’, in IEEE Transactions on Nuclear Science, vol. 55, No. 1, pp. 256-260, February 2008
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP017  
About • Received ※ 02 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP101 Creating of HDF5 Files as Data Source for Analyses Using the Example of ALPS IIc and the DOOCS Control System 1570
 
  • S. Karstensen, P. Gonzalez-Caminal, A. Lindner, I. Oceano, V. Rybnikov, K. Schwarz, G. Sedov
    DESY, Hamburg, Germany
  • G. Günther, O. Mannix
    HZB, Berlin, Germany
 
  ALPS II is a light-shining through a wall (LSW) experiment to search for WISPs (very Weakly Interacting Slim Particles). Potential WISP candidates are axion-like particles or hidden sector photons. Axion-like particles may convert to light (and vice versa) in presence of a magnetic field. Similarly, hidden sector photons "mix" with light independent of any magnetic fields. This is exploited by ALPS II- Light from strong laser is shone into a magnetic field. Laser photons can be converted into a WISPs in front of a light-blocking barrier and reconverted into photons behind that barrier.  The experiment exploits optical resonators for laser power build-up in a large-scale optical cavity to boost the available power for the WISP production as well as their reconversion probability to light. The Distributed Object-Oriented Control System - DOOCS - provides a versatile software framework for creating accelerator-based control system applications. These can range from monitoring simple temperature sensors up to high-level controls and feedbacks of beam parameters as required for complex accelerator operations. In order to enable data analysis by researchers who do not have access to the DOOCS internal control system to read measured values, the measurement and control data are extracted from the control system and saved in HDF5 file format. Through this process, the data is decoupled from the control system and can be analysed on the NAF computer system, among other things. NodeRed acts here as a graphical tool for creating HDF5 files.  
poster icon Poster THPDP101 [50.659 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP101  
About • Received ※ 04 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 06 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)