Author: Rizzo, A.
Paper Title Page
THMBCMO11 Full Stack PLC to EPICS Integration at ESS 1216
 
  • A. Rizzo, E.E. Foy, D. Hasselgren, A.Z. Horváth, A. Petrushenko, J.A. Quintanilla, S.C.F. Rose, A. Simelio
    ESS, Lund, Sweden
 
  The European Spallation Source is one of the largest science and technology infrastructure projects being built today. The Control System at ESS is then essential for the synchronisation and day-to-day running of all the equipment responsible for the production of neutrons for the experimental programs. The standardised PLC platform for ESS to handle slower signal comes from Siemens*, while for faster data interchange with deterministic timing and higher processing power, from Beckoff/EtherCAT**. All the Control Systems based on the above technologies are integrated using EPICS framework***. We will present how the full stack integration from PLC to EPICS is done at ESS using our standard Configuration Management Ecosystem.
* https://www.siemens.com/global/en/products/automation/systems/industrial/plc.html
** https://www.beckhoff.com/en-en/products/i-o/ethercat/
*** https://epics-controls.org/
 
slides icon Slides THMBCMO11 [0.178 MB]  
poster icon Poster THMBCMO11 [0.613 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO11  
About • Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 18 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP030 ESS Drift Tube Linac Control System Commissioning: Results and Lessons Learned 1377
 
  • M. Montis, L. Antoniazzi, A. Baldo, M.G. Giacchini
    INFN/LNL, Legnaro (PD), Italy
  • A. Rizzo
    ESS, Lund, Sweden
 
  European Spallation Source (ESS) will be a neutron source using proton beam Linac of expected 5MW beam power. Designed and implemented by INFN-LNL, the Drift Tube Linac (DTL) control system is based on EPICS framework as indicated by the Project Requirements. This document aims to describe the results of the first part of the control system commissioning stage in 2022, where INFN and ESS teams were involved in the final tests on site. This phase was the first step toward a complete de-ployment of the control system, where the installation was composed by three sequential stages, according to the apparatus commissioning schedule. In this scenario, the firsts Site Acceptance Test (SAT) and Site Integrated Test (SIT) were crucial, and their results were the mile-stones for the other stages: the lessons learned can be important to speed up the future integration, calibration, and tuning of such a complex control system.

 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP030  
About • Received ※ 18 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)