Author: Reszela, Z.
Paper Title Page
TUPDP076 Preliminary Design for the ALBA II Control System Stack 685
 
  • S. Rubio-Manrique, F. Becheri, G. Cuní, R.H. Homs, Z. Reszela
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  One of the main pillars of the ALBA Synchrotron Light Source (Barcelona, Spain) Strategy Plan is the preparation of ALBA to be upgraded to a fourth-generation light source. To accomplish this, a preliminary design of the accelerator has already been initiated in 2021. On the Computing side, the upgrade of the accelerator will require a comprehensive overhaul of most parts of the Control System, DAQ, Timing, and many other systems as well as DevOps strategies. This need for a major redesign will bring new architectural challenges, and opportunities to benefit from new technologies that were not present at the time ALBA was designed and build. This paper presents the preliminary design studies, pilot projects, new approaches to development coordination and management, and the preparation plan to acquire the knowledge and experience needed to excel in the ALBA II Control System Stack design.  
poster icon Poster TUPDP076 [1.095 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP076  
About • Received ※ 06 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP077 Towards the ALBA II : the Computing Division Preliminary Study 691
 
  • O. Matilla, J.A. Avila-Abellan, F. Becheri, S. Blanch-Torné, A.M. Burillo, A. Camps Gimenez, I. Costa, G. Cuní, T. Fernández Maltas, R.H. Homs, J. Moldes, E. Morales, C. Pascual-Izarra, S. Pusó Gallart, A. Pérez Font, Z. Reszela, B. Revuelta, A. Rubio, S. Rubio-Manrique, J. Salabert, N. Serra, X. Serra-Gallifa, N. Soler, S. Vicente Molina, J. Villanueva
    ALBA-CELLS, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron has started the work for up-grading the accelerator and beamlines towards a 4th gen-eration source, the future ALBA II, in 2030. A complete redesign of the magnets lattice and an upgrade of the beamlines will be required. But in addition, the success of the ALBA II project will depend on multiple factors. First, after thirteen years in operation, all the subsystems of the current accelerator must be revised. To guarantee their lifetime until 2060, all the possible ageing and obsoles-cence factors must be considered. Besides, many tech-nical enhancements have improved performance and reliability in recent years. Using the latest technologies will also avoid obsolescence in the medium term, both in the hardware and the software. Considering this, the pro-ject ALBA II Computing Preliminary Study (ALBA II CPS) was launched in mid-2021, identifying 11 work packages. In each one, a group of experts were selected to analyze the different challenges and needs in the compu-ting and electronics fields for future accelerator design: from power supplies technologies, IOC architectures, or PLC-based automation systems to synchronization needs, controls software stack, IT Systems infrastructure or ma-chine learning opportunities. Now, we have a clearer picture of what is required. Hence, we can build a realistic project plan to ensure the success of the ALBA II. It is time to get ALBA II off the ground.  
poster icon Poster TUPDP077 [0.687 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP077  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 15 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP050 Improving User Experience and Performance in Sardana and Taurus: A Status Report and Roadmap 1420
 
  • Z. Reszela, J. Aguilar Larruy, M. Caixal i Joaniquet, G. Cuní, R. Homs-Puron, E. Morales, M. Navarro, C. Pascual-Izarra, J.A. Ramos, S. Rubio-Manrique, O. Vallcorba
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • B. Bertrand, J. Forsberg
    MAX IV Laboratory, Lund University, Lund, Sweden
  • M.T. Núñez Pardo de Vera
    DESY, Hamburg, Germany
  • M. Piekarski
    NSRC SOLARIS, Kraków, Poland
  • D. Schick
    MBI, Berlin, Germany
 
  Sardana Suite is an open-source scientific SCADA solution used in synchrotron light beamlines at ALBA, DESY, MAXIV and SOLARIS and in laser labs at MBI-Berlin. It is formed by Sardana and Taurus - both mature projects, driven by a community of users and developers for more than 10 years. Sardana provides a low level interface to the hardware, middle level abstractions and a sequence engine. Taurus is a library for developing graphical user interfaces. Sardana Suite uses client - server architecture and is built on top of TANGO. As a community, during the last few years, on one hand we were focusing on improving user experience, especially in terms of reliability and performance and on the other hand renewing the dependency stack. The system is now more stable, easier to debug and recover from a failure. An important effort was put in profiling and improving performance of Taurus applications startup. The codebase has been migrated to Python 3 and the plotting widgets were rewritten with pyqtgraph. This didn’t prevent us from delivering new features, like for example the long-awaited configuration tools and format based on YAML which is easy and intuitive to edit, browse, and track historical changes. Now we conclude this phase in the project’s lifetimes and are preparing for new challenging requirements in the area of continuous scans like higher data throughput and more complex synchronization configurations. Here we present the status report and the future roadmap.  
poster icon Poster THPDP050 [0.605 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP050  
About • Received ※ 06 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 21 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)