Author: Peterson, J.
Paper Title Page
TUMBCMO12 Multi-Dimensional Spectrogram Application for Live Visualization and Manipulation of Large Waveforms 368
 
  • B.E. Bolling, A.A. Gorzawski, J. Peterson
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a research facility under construction aiming to be the world’s most powerful pulsed neutron source. It is powered by a complex particle accelerator designed to provide a 2.86 ms long proton pulse at 2 GeV with a repetition rate of 14 Hz. Protons are accelerated via cavity fields through various accelerating structures that are powered by Radio-Frequency (RF) power. As the cavity fields may break down due to various reasons, usually post-mortem data of such events contain the information needed regarding the cause. In other events, the underlying cause may have been visible on previous beam pulses before the interlock triggering event. The Multi-Dimensional Spectrogram Application is designed to be able to collect, manipulate and visualize large waveforms at high repetition rates, with the ESS goal being 14 Hz, for example cavity fields, showing otherwise unnoticed temporary breakdowns that may explain the sometimes-unknown reason for increased power (compensating for those invisible temporary breakdowns). The first physical event that was recorded with the tool was quenching of a superconducting RF cavity in real time in 3D. This paper describes the application developed using Python and the pure-python graphics and GUI library PyQtGraph and PyQt5 with Python-OpenGL bindings.  
slides icon Slides TUMBCMO12 [2.932 MB]  
poster icon Poster TUMBCMO12 [11.475 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO12  
About • Received ※ 04 October 2023 — Accepted ※ 23 November 2023 — Issued ※ 23 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)