Author: Moreno, G.B.Z.L.
Paper Title Page
TUMBCMO34 Motion Control Architecture and Kinematics for Multi-DoF Kirkpatrick-Baez Focusing Mirrors System at LNLS-Sirius 443
 
  • J.P.S. Furtado, C.S.N.C. Bueno, J.V.E. Matoso, M.A. Montevechi Filho, G.B.Z.L. Moreno, T.R. Silva Soares
    LNLS, Campinas, Brazil
 
  Funding: Ministry of Science, Technology and Innovation (MCTI)
In modern 4th generation synchrotron facilities, piezo actuators are widely applied due to their nanometric precision in linear motion and stability. This work shows the implementation of a switching control architecture and a tripod kinematics for a set of 4 piezo actuators, responsible by positioning the short-stroke: the vertical and horizontal focusing mirrors of the Kirkpatrick-Baez mirror system at MOGNO Beamline (X-Ray Microtomography). The switching control architecture was chosen to balance timing to move through the working range (changing the beam incidence on stripes of low/high energy), resolution and infrastructure costs. This paper also shows the implementation and results of the developed kinematics by layers that uncouples short-stroke from long-stroke to fix any parasitic displacements that occur on the granite bench levelers due to slippage during the movement and to match the required beam stability without losing alignment flexibility or adjustment repeatability. The architecture was built between a PIMikroMove set of driver-actuators and an Omron Delta Tau Power Brick controller due to its standardization across the control systems solutions at Sirius, ease of control software scalability and its capability to perform calculations and signal switching for control in C language, with real-time performance to make adjustments to the angles responsible by focusing the beam in a speed that matches the required position stability, guaranteeing the necessary resolution for the experiments.
 
slides icon Slides TUMBCMO34 [1.753 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO34  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 28 November 2023 — Issued ※ 08 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO35 Piezo Motor Based Hardware Triggered Nano Focus Caustic Acquisition 1285
 
  • L.B.C. Campoi, G.S.R. Costa, N. Lopes Archilha, G.B.Z.L. Moreno, L.E.P. Vecina
    LNLS, Campinas, Brazil
 
  The evaluation of the focus produced by a KB (Kirkpatrick-Baez) mirror system is a challenging endeavor. In MOGNO (Micro and nano tomography) beamline’s case at Sirius, the KB was designed to produce a focus of 150x150 nm2, requiring a setup to evaluate the mirrors’ alignment in a timely manner. The developed diagnostic system is comprised of a stack of three linear inertia drive piezo stages and a fluorescence detector, acquiring data via hardware-triggered mesh scans. In the piezo stack, the stages are mounted along the X (horizontal, perpendicular to the beam path), Z (along the beam path) and YZ beamline directions. Moreover, the fact that a stage is placed at an angle requires the use of a kinematic transformation when scaning the focus along the Y axis, while the X axis scan can be done with a pure motion. The mesh scan can be diveded in two parts: hardware triggered line scan acquisition along X or Y and software triggered steps along Z between scans. In this manner, the control is done via a collection of low-level controller macros and Python scripts, such that during the scans, the piezo controllers communicate with each other and the detector via digital pulses, orchestrated by the in-house TATU (Timing and Trigger Unit) software*, reducing dead time between acquisition points. The proposed system proved to be reliable to acquire beam profiles, providing caustics in both horizontal and vertical directions. Currently, the acquired focus caustics indicate that the main source has a size of approximately 480x500 nm2.
* TATU: A Flexible FPGA-Based Trigger and Timer Unit Created on CompactRIO for the First Sirius Beamlines ISBN 978-3-95450-221-9 ISSN 2226-0358 URL https://jacow.org/icalepcs2021/papers/thpv021.pdf
 
slides icon Slides THMBCMO35 [1.608 MB]  
poster icon Poster THMBCMO35 [1.666 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO35  
About • Received ※ 06 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)