Paper | Title | Page |
---|---|---|
TUPDP041 | Safety System Final Design for the ITER Heating Neutral Beam Injector Test Bed | 602 |
|
||
Funding: This work has been carried out within the ITER-RFX Neutral Beam Test Facility (NBTF) Agreement and Fusion for Energy F4E-OFC-280 contract. MITICA, the prototype of the ITER heating neutral beam injector, will use an extensive computer-based safety system (MS) to provide occupational safety. The MS will integrate all personnel safety aspects. After a detailed risk analysis to identify the possible hazards and associated risks, we determined the safety instrumented functions (SIFs), needed to mitigate safety risks, and the associated Safety Integrity Levels (SIL), as prescribed in the IEC 61508 technical standard on functional safety of electrical/electronic/programmable electronic safety-related systems. Finally, we verified the SIFs versus the required SIL. We identified 53 SIFs, 3 of which allocated to SIL2, 23 to SIL1, and the others without SIL. Based on the system analysis, we defined the MS architecture, also considering the following design criteria: - Using IEC 61508 and IEC 61511 (Safety instrumented systems for the process industry) as guidelines; - Using system hardware to allow up to SIL3 SIFs; - Using certified software tools to allow programming up to SIL3 SIFs. The SIL3 requirement derives from the need to minimize the share of the hw/sw failure probability, thus allowing maximum share to sensors and actuators. The paper presents the requirements for the MITICA safety systems and the system design to meet them. Due to the required system reliability and availability, the hardware architecture is fully redundant. Given the requirement to choose proven solutions, the system implementation adopts industrial components. |
||
Poster TUPDP041 [2.498 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP041 | |
About • | Received ※ 05 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP042 | Control and Data Acquisition System Upgrade in RFX-mod2 | 607 |
|
||
RFX-mod2, currently under construction at Consorzio RFX, is an evolution of the former RFX-mod experiment, with an improved shell and a larger set of electromagnetic sensors. This set, including 192 saddle coils, allows exploring a wide range of plasma control schemas, but at the same time poses a challenge for its Control and Data Acquisition System (CODAS). RFX-mod2 CODAS is required to provide the high-speed acquisition of a large set of signals and their inclusion in the Plasma Control System that must provide a sub-millisecond response to plasma instabilities. While brand new solutions are provided for the acquisition of the electromagnetic signals, involving Zynq-based ADC devices, other parts of the CODAS system have been retained from the former RFX-mod CODAS. The paper presents the solutions adopted in the new RFX-mod2 CODAS, belonging to three main categories: 1) Plasma Real-Time control, including both hardware solutions based on Zynq and the integration of data acquisition and real-time frameworks for its software configuration. For this purpose, MDSplus and MARTe2, two frameworks for data acquisition and real-time control, respectively, have been adopted, which are widely used in the fusion community. 2) Data acquisition, including upgrades performed to the former cPCI-based systems and new ad-hoc solutions based on RedPitaya. 3) Plant supervision, carried out in WinCC-OA and integrated with the data acquisition system via a new WinCC-OA database plugin. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP042 | |
About • | Received ※ 05 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 16 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP043 | Final Design of Control and Data Acquisition System for the ITER Heating Neutral Beam Injector Test Bed | 612 |
|
||
Funding: This work has been carried out within the framework of the EUROfusion Consortium funded by the European Union via Euratom Research and Training Programme (Grant Agreement No 101052200 - EUROfusion) Tokamaks use heating neutral beam (HNB) injectors to reach fusion conditions and drive the plasma current. ITER, the large international tokamak, will have three high-energy, high-power (1MeV, 16.5MW) HNBs. MITICA, the ITER HNB prototype, is being built at the ITER Neutral Beam Test Facility, Italy, to develop and test the ITER HNB, whose requirements are far beyond the current HNB technology. MITICA operates in a pulsed way with pulse duration up to 3600s and 25% duty cycle. It requires a complex control and data acquisition system (CODAS) to provide supervisory and plant control, monitoring, fast real-time control, data acquisition and archiving, data access, and operator interface. The control infrastructure consists of two parts: central and plant system CODAS. The former provides high-level resources such as servers and a central archive for experimental data. The latter manages the MITICA plant units, i.e., components that generally execute a specific function, such as power supply, vacuum pumping, or scientific parameter measurements. CODAS integrates various technologies to implement the required functions and meet the associated requirements. Our paper presents the CODAS requirement and architecture based on the experience gained with SPIDER, the ITER full-size beam source in operation since 2018. It focuses on the most challenging topics, such as synchronization, fast real-time control, software development for long-lasting experiments, system commissioning, and integration. |
||
Poster TUPDP043 [0.621 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP043 | |
About • | Received ※ 05 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |