Author: Lolliot, C.A.
Paper Title Page
TUPDP096 Early Fire Detection in High Power Equipment 775
 
  • S. Pavis, E. Carlier, C.A. Lolliot, N. Magnin
    CERN, Meyrin, Switzerland
 
  Very early fire detection in equipment cabinets containing high power supply sources and power electronic switching devices is needed when building and tunnel fire detection systems may not be well placed to detect a fire until it is well established. Highly sensitive aspirating smoke detection systems which continuously sample the air quality inside equipment racks and give local power interlock in the event of smoke detection, are capable of cutting the source of power to these circuits at a very early stage, thereby preventing fires before they become fully established. Sampling pipework can also be routed to specific locations within the cabinet for more zone focused monitoring, while the electronic part of the detection system is located externally of the cabinet for easy operation and maintenance. Several of these early fire detection systems have recently been installed in LHC and SPS accelerator kicker installations, with many more planned. This paper compares the detection technology from typical manufacturers, presents the approach adopted and its mechanical installation and discusses the integration within different control architecture.  
poster icon Poster TUPDP096 [1.139 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP096  
About • Received ※ 05 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 18 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP098 Automatic Conditioning of High Voltage Pulsed Magnets 780
 
  • C.A. Lolliot, M.J. Barnes, N. Magnin, S. Pavis, P. Van Trappen
    CERN, Meyrin, Switzerland
  • C. Monier
    INSA Lyon, Villeurbanne, France
 
  Fast pulsed kicker magnets are used across the various accelerators of CERN complex to inject and extract the beam. These kicker magnets, powered by high voltage pulsed generators and under vacuum, are prone to electrical breakdown during the pulse. To prepare the kicker magnet for reliable operation, or in case an electrical breakdown occurred, a conditioning is necessary: the magnet is pulsed gradually increasing the pulse voltage and length up to a value beyond operational conditions. This is a lengthy process that requires kicker experts on site to manually control the pulse voltage and length, and monitor the vacuum activity. For the start of LHC operation, a first automatic conditioning system was deployed on injection kicker magnet (MKI). Configurable voltage and pulse length ramps are automatically performed by the controller. In case abnormal vacuum activity occurs, the voltage is reduced and then the process continues. Based on this experience, a standardised algorithm has been developed, adding new features such as logarithmic ramp, or simulation of the whole conditioning cycle with test of reaction to vacuum activity. This new automatic conditioning system was deployed on several kicker systems across various CERN accelerators, allowing smoother conditioning, and great reduction on manpower. It also offers the possibility for further automate kicker system operation, starting automatically a magnet conditioning when needed without intervention of kickers experts, similarly as what was deployed for SPS Beam Dump System.  
poster icon Poster TUPDP098 [0.328 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP098  
About • Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP101 A Modular Approach for Accelerator Controls Components Deployment for High Power Pulsed Systems 788
 
  • S. Pavis, R.A. Barlow, C. Boucly, E. Carlier, C. Chanavat, C.A. Lolliot, N. Magnin, P. Van Trappen
    CERN, Meyrin, Switzerland
  • N. Voumard
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  As part of the LHC Injector Upgrade (LIU) project, the controls of the PSB and PS injection kickers at CERN have been upgraded during Long Shutdown 2 (LS2) from heterogeneous home-made electronic solutions to a modular and open architecture. Despite both kickers have significantly different functionalities, topologies and operational requirements, standardized hardware and software control blocks have been used for both systems. The new control architecture is built around a set of sub-systems, each one with a specific generic function required for the control of fast pulsed systems such as equipment and personnel safety, slow control and protection, high precision fast timing system, fast interlocking and protection, pulsed signal acquisition and analysis. Each sub-system comprises a combined integration of hardware components and associated low level software. This paper presents the functionality of the different sub-systems, illustrates how they have been integrated for the two different use-cases, discusses the lessons learned from these first implementations and identifies possible evolution in view of deployment in other installations during Long Shutdown 3 (LS3).  
poster icon Poster TUPDP101 [0.842 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP101  
About • Received ※ 06 October 2023 — Revised ※ 21 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 06 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)