Author: Lindberg, M.
Paper Title Page
TUMBCMO19 MAX IV Laboratory’s Control System Evolution and Future Strategies 395
 
  • V. Hardion, P.J. Bell, T. Eriksson, M. Lindberg, P. Sjöblom, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV Laboratory, a 4th generation synchrotron radiation facility located in southern Sweden, has been operational since 2016. With multiple beamlines and experimental stations completed and in steady use, the facility is now approaching the third phase of development, which includes the final two of the 16 planned beamlines in user operation. The focus is on achieving operational excellence by optimizing reliability and performance. Meanwhile, the strategy for the coming years is driven by the need to accommodate a growing user base, exploring the possibility of operating a Soft X-ray Laser (SXL), and achieving the diffraction limit for 10 keV of the 3 GeV. The Technical Division is responsible for the control and computing systems of the entire laboratory. This new organization provides a coherent strategy and a clear vision, with the ultimate goal of enabling science. The increasing demand for more precise and efficient control systems has led to significant developments and maintenance efforts. Pushing the limits in remote access, data generation, time-resolved and fly-scan experiments, and beam stability requires the proper alignment of technology in IT infrastructure, electronics, software, data analysis, and management. This article discusses the motivation behind the updates, emphasizing the expansion of the control system’s capabilities and reliability. Lastly, the technological strategy will be presented to keep pace with the rapidly evolving technology landscape, ensuring that MAX IV is prepared for its next major upgrade.  
slides icon Slides TUMBCMO19 [8.636 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUMBCMO19  
About • Received ※ 06 October 2023 — Revised ※ 12 October 2023 — Accepted ※ 24 November 2023 — Issued ※ 29 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP083 DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory 713
 
  • V. Da Silva, B.N. Ahn, J.P. Alcocer, R. Appio, Á. Freitas, M. Lindberg, T.S. Plivelic, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector.  
poster icon Poster TUPDP083 [1.645 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083  
About • Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP084
Control System for the MAX IV Transverse Deflecting Cavity Beamline  
 
  • Á. Freitas, N. Blaskovic Kraljevic, J. Brudvik, F.H. Holmlund, A. Johansson, M. Lindberg, E. Mansten, R. Svärd, C. Takahashi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV 3 GeV LINAC serves as a full-energy injector for two electron storage rings and as a driver for the Short Pulse Facility (SPF) and a future Soft X-ray Laser (SXL). To achieve high temporal resolution for longitudinal beam characterization, a transverse deflecting cavity (TDC) system has been developed and installed in a dedicated electron beamline downstream of the LINAC. The TDC beamline comprises two consecutive 3 m long transverse S-band RF structures, followed by a variable vertical deflector dipole magnet used as an energy spectrometer. In this paper, we present the newly implemented control system and scanning routines for data acquisition and analyses. The control system enables precise manipulation of the TDC system, ensuring accurate measurement of longitudinal beam characteristics. The scanning routines facilitate systematic data acquisition for comprehensive beam analysis.  
poster icon Poster TUPDP084 [0.468 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPDP145 Position-Based Continuous Energy Scan Status at MAX IV 917
 
  • Á. Freitas, N.S. Al-Habib, B. Bertrand, M. Eguiraun, I. Gorgisyan, A.F. Joubert, J. Lidón-Simon, M. Lindberg, C. Takahashi
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations.  
poster icon Poster TUPDP145 [1.943 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145  
About • Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3BCO08 Efficient and Automated Metadata Recording and Viewing for Scientific Experiments at MAX IV 1041
 
  • D. van Dijken, V. Da Silva, M. Eguiraun, V. Hardion, J.M. Klingberg, M. Leorato, M. Lindberg
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  With the advancements in beamline instrumentation, synchrotron research facilities have seen a significant improvement. The detectors used today can generate thousands of frames within seconds. Consequently, an organized and adaptable framework is essential to facilitate the efficient access and assessment of the enormous volumes of data produced. Our communication presents a metadata management solution recently implemented at MAX IV, which automatically retrieves and records metadata from Tango devices relevant to the current experiment. The solution includes user-selected scientific metadata and predefined defaults related to the beamline setup, which are integrated into the Sardana control system and automatically recorded during each scan via the SciFish[1] library. The metadata recorded is stored in the SciCat[2] database, which can be accessed through a web-based interface called Scanlog[3]. The interface, built on ReactJS, allows users to easily sort, filter, and extract important information from the recorded metadata. The tool also provides real-time access to metadata, enabling users to monitor experiments and export data for post-processing. These new software tools ensure that recorded data is findable, accessible, interoperable and reusable (FAIR[4]) for many years to come. Collaborations are on-going to develop these tools at other particle accelerator research facilities.
[1] https://gitlab.com/MaxIV/lib-maxiv-scifish
[2] https://scicatproject.github.io/
[3] https://gitlab.com/MaxIV/svc-maxiv-scanlog
[4] https://www.nature.com/articles/sdata201618
 
slides icon Slides WE3BCO08 [1.914 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3BCO08  
About • Received ※ 06 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH2BCO01 Synchronized Nonlinear Motion Trajectories at MAX IV Beamlines 1160
 
  • P. Sjöblom, H. Enquist, Á. Freitas, J. Lidón-Simon, M. Lindberg, S. Malki
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The motions at beamlines sometimes require components to move along non-trivial and non-linear paths. This type of motion can be achieved by combining several simple axes, typically linear and rotation actuators, and controlling them to perform synchronized motions along individual non-linear paths. A good example is the 10-meter-long spectrometer at MAX IV Veritas beamline, operating under the Rowland condition. The system consists of 6 linked axes that must maintain the position of detectors while avoiding causing any damage to the mechanical structure. The nonlinear motions are constructed as a trajectory through energy or focus space. The trajectory changes whenever any parameter changes or when moving through focus space at fixed energy instead of through energy space. Such changes result in automated generation and uploading of new trajectories. The motion control is based on parametric trajectory functionality provided by IcePAP. Scanning and data acquisition are orchestrated through Tango and Sardana to ensure full motion synchronization and that triggers are issued correctly.  
slides icon Slides TH2BCO01 [0.884 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO01  
About • Received ※ 05 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO09
DAQ System Based on Sardana and PandABox for Combined SAXS, Fluorescence and UV-Vis Spectroscopy Techniques at MAX IV CoSAXS Beamline  
 
  • V. Da Silva, R. Appio, M. Eguiraun, F. Herranz-Trillo, A.F. Joubert, M. Leorato, Y.L. Li, M. Lindberg, C. Takahashi, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
  • C. Dicko
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • W.T. Kitka
    S2Innovation, Kraków, Poland
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. This paper presents the data acquisition (DAQ) strategy for combined SAXS, Ultraviolet-visible (UV-Vis) and Fluorescence Spectroscopy techniques. In general terms, the beamline control system is based on TANGO and on top of it, Sardana provides an advanced scan framework. Sardana performs the experiment orchestration, configuring and preparing the X-ray detector and the Spectrometers for UV-Vis and Fluorescence. Hardware triggers are used to synchronize the DAQ for the different techniques running simultaneously. The implementation is done using PandABox, which generates pulse trains for the X-ray detector and spectrometers. PandABox integration into the system is done with a Sardana Trigger Gate Controller, used to configure the pulse trains parameters as well to orchestrate the hardware triggers during a scan. This paper describes the individual techniques’ integration into the control system, the experiment orchestration and synchronization and the new experiment possibilities this multi-technique DAQ system brings to MAX IV beamlines.  
slides icon Slides THMBCMO09 [0.570 MB]  
poster icon Poster THMBCMO09 [1.600 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP040 Control System of the ForMAX Beamline at the MAX IV Synchrotron 1402
 
  • W.T. Kitka
    S2Innovation, Kraków, Poland
  • V. Da Silva, V.H. Haghighat, Y.L. Li, J. Lidón-Simon, M. Lindberg, S. Malki, K. Nygård, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This paper describes the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron. MAX IV is a Swedish national laboratory that houses one of the brightest synchrotron light sources in the world. ForMAX is one of the beamlines at MAX IV and is funded by the Knut and Alice Wallenberg Foundation and Swedish industry via Treesearch. To meet the specific demands of ForMAX, a new control system was developed using the TANGO Controls and Sardana frameworks. Using these frameworks enables seamless integration of hardware and software, ensuring efficient and reliable beamline operation. The control system was designed to support a variety of experiments, including multiscale structural characterization from nanometer to millimeter length scales by combining full-field tomographic imaging, small- and wide-angle X-ray scattering (SWAXS), and scanning SWAXS imaging in a single instrument. The system allows for precise control of the beam position, energy, intensity, and sample position. Furthermore, the system provides real-time feedback on the status of the experiments, allowing for adjustments to be made quickly and efficiently. In conclusion, the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron has resulted in a highly flexible and efficient experimental station. TANGO Controls and Sardana have allowed for seamless integration of hardware and software, enabling precise and reliable control of the beamline for a wide range of experiments.  
poster icon Poster THPDP040 [0.668 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)