Author: Li, Y.L.
Paper Title Page
THMBCMO09
DAQ System Based on Sardana and PandABox for Combined SAXS, Fluorescence and UV-Vis Spectroscopy Techniques at MAX IV CoSAXS Beamline  
 
  • V. Da Silva, R. Appio, M. Eguiraun, F. Herranz-Trillo, A.F. Joubert, M. Leorato, Y.L. Li, M. Lindberg, C. Takahashi, A.E. Terry
    MAX IV Laboratory, Lund University, Lund, Sweden
  • C. Dicko
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • W.T. Kitka
    S2Innovation, Kraków, Poland
 
  CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. This paper presents the data acquisition (DAQ) strategy for combined SAXS, Ultraviolet-visible (UV-Vis) and Fluorescence Spectroscopy techniques. In general terms, the beamline control system is based on TANGO and on top of it, Sardana provides an advanced scan framework. Sardana performs the experiment orchestration, configuring and preparing the X-ray detector and the Spectrometers for UV-Vis and Fluorescence. Hardware triggers are used to synchronize the DAQ for the different techniques running simultaneously. The implementation is done using PandABox, which generates pulse trains for the X-ray detector and spectrometers. PandABox integration into the system is done with a Sardana Trigger Gate Controller, used to configure the pulse trains parameters as well to orchestrate the hardware triggers during a scan. This paper describes the individual techniques’ integration into the control system, the experiment orchestration and synchronization and the new experiment possibilities this multi-technique DAQ system brings to MAX IV beamlines.  
slides icon Slides THMBCMO09 [0.570 MB]  
poster icon Poster THMBCMO09 [1.600 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP040 Control System of the ForMAX Beamline at the MAX IV Synchrotron 1402
 
  • W.T. Kitka
    S2Innovation, Kraków, Poland
  • V. Da Silva, V.H. Haghighat, Y.L. Li, J. Lidón-Simon, M. Lindberg, S. Malki, K. Nygård, E. Rosendahl
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  This paper describes the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron. MAX IV is a Swedish national laboratory that houses one of the brightest synchrotron light sources in the world. ForMAX is one of the beamlines at MAX IV and is funded by the Knut and Alice Wallenberg Foundation and Swedish industry via Treesearch. To meet the specific demands of ForMAX, a new control system was developed using the TANGO Controls and Sardana frameworks. Using these frameworks enables seamless integration of hardware and software, ensuring efficient and reliable beamline operation. The control system was designed to support a variety of experiments, including multiscale structural characterization from nanometer to millimeter length scales by combining full-field tomographic imaging, small- and wide-angle X-ray scattering (SWAXS), and scanning SWAXS imaging in a single instrument. The system allows for precise control of the beam position, energy, intensity, and sample position. Furthermore, the system provides real-time feedback on the status of the experiments, allowing for adjustments to be made quickly and efficiently. In conclusion, the design and implementation of the control system for the ForMAX beamline at the MAX IV synchrotron has resulted in a highly flexible and efficient experimental station. TANGO Controls and Sardana have allowed for seamless integration of hardware and software, enabling precise and reliable control of the beamline for a wide range of experiments.  
poster icon Poster THPDP040 [0.668 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP040  
About • Received ※ 04 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 12 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR2BCO03 Taranta Project - Update and Current Status 1657
 
  • Y.L. Li, M. Eguiraun, J. Forsberg, V. Hardion, M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • V. Alberti
    INAF-OAT, Trieste, Italy
  • M. Canzari
    INAF - OAAB, Teramo, Italy
  • A. Dubey
    PSL, Pune, India
  • M. Gandor, D.T. Trojanowska
    S2Innovation, Kraków, Poland
  • H.R. Ribeiro
    Universidade do Porto, Faculdade de Ciências, Porto, Portugal
 
  Taranta, developed jointly by MAX IV Laboratory and SKA Observatory, is a web based no-code interface for remote control of instruments at accelerators and other scientific facilities. It has seen a great success in system development and scientific experiment usage. In the past two years, the panel of users has greatly expanded. The first generation of Taranta was not able to handle the challenges introduced by the user cases, notably the decreased performance when a high number of data points are requested, as well as new functionality requests. Therefore, a series of refactoring and performance improvements of Taranta are ongoing, to prepare it for handling large data transmission between Taranta and multiple sources of information, and to provide more possibilities for users to develop their own dashboards. This article presents the status of the Taranta project from the aspects of widgets updates, packages management, optimization of the communication with the backend TangoGQL, as well as the investigation on a new python library compatible with the newest python version for TangoGQL. In addition to the technical improvements, more facilities other than MAX IV and SKAO are considering to join Taranta project. One workshop has been successfully held and there will be more in the future. This article also presents the lesson learned from this project, the road map, and the GUI strategy for the near future.  
slides icon Slides FR2BCO03 [4.759 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR2BCO03  
About • Received ※ 06 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 23 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)