Author: Leclercq, N.
Paper Title Page
TH1BCO03 The Tango Controls Collaboration Status in 2023 1100
 
  • T. Juerges
    SKAO, Macclesfield, United Kingdom
  • G. Abeillé
    SOLEIL, Gif-sur-Yvette, France
  • R.J. Auger-Williams
    OSL, St Ives, Cambridgeshire, United Kingdom
  • B. Bertrand, V. Hardion, A.F. Joubert
    MAX IV Laboratory, Lund University, Lund, Sweden
  • R. Bourtembourg, A. Götz, D. Lacoste, N. Leclercq
    ESRF, Grenoble, France
  • T. Braun
    byte physics, Annaburg, Germany
  • G. Cuní, C. Pascual-Izarra, S. Rubio-Manrique
    ALBA-CELLS, Cerdanyola del Vallès, Spain
  • Yu. Matveev
    DESY, Hamburg, Germany
  • M. Nabywaniec, T.R. Noga, Ł. Żytniak
    S2Innovation, Kraków, Poland
  • L. Pivetta
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Since 2021 the Tango Controls collaboration has improved and optimised its efforts in many areas. Not only have Special Interest Group meetings (SIGs) been introduced to speed up the adoption of new technologies or improvements, the kernel has switched to a fixed six-month release cycle for quicker adoption of stable kernel versions by the community. CI/CD provides now early feedback on test failures and compatibility issues. Major code refactoring allowed for a much more efficient use of developer resources. Relevant bug fixes, improvements and new features are now adopted at a much higher rate than ever before. The community participation has also noticeably improved. The kernel switched to C++14 and the logging system is undergoing a major refactoring. Among many new features and tools is jupyTango, Jupyter Notebooks on Tango Controls steroids. PyTango is now easy to install via binary wheels, old Python versions are no longer supported, the build-system is switching to CMake, and releases are now made much closer to stable cppTango releases.  
slides icon Slides TH1BCO03 [1.357 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03  
About • Received ※ 05 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 13 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP010 Update on the EBS Storage Ring Beam Dynamics Digital Twin 1306
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, N. Leclercq, T.P. Perron, J.L. Pons, S.M. White
    ESRF, Grenoble, France
 
  The EBS storage ring control system is presently paired with an electron beam dynamics digital twin (the EBS control system simulator, EBSS*). The EBSS reproduces many of the beam dynamics related quantities relevant for machine operation. This digital twin is used for the preparation and debug of software to deploy for operation. The EBSS is presently working only for the main storage ring and it is not directly connected to the machine operation but works in parallel and on demand. We present here the steps taken towards an on-line continuous use of the EBSS to monitor the evolution of not directly observable parameters such as beam optics.
* Simone Liuzzo, et al. The ESRF-EBS Simulator: A Commissioning Booster. 18th ICALEPCS, Oct 2021, Shanghai, China. MOPV012
 
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP010  
About • Received ※ 27 September 2023 — Revised ※ 25 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)