Paper | Title | Page |
---|---|---|
MO2AO04 | Experimental Data Taking and Management: The Upgrade Process at BESSY II and HZB | 84 |
|
||
The endeavor of modernizing science data acquisition at BESSY II started 2019 [*] Significant achievements have been made: the Bluesky software ecosystem is now accepted framework for data acquisition, flow control and automation. It is operational at an increasing number of HZB beamlines, endstations and instruments. Participation in the global Bluesky collaboration is an extremely empowering experience. Promoting FAIR data principles at all levels developed a unifying momentum, providing guidance at less obvious design considerations. Now a joint demonstrator project of DESY, HZB, HZDR and KIT, named ROCK-IT (Remote Operando Controlled Knowledge-driven, IT-based), aims at portable solutions for fully automated measurements in the catalysis area of material science and is spearheading common developments. Foundation there is laid by Bluesky data acquisition, AI/ML support and analysis, modular sample environment, robotics and FAIR data handling. This paper puts present HZB controls projects as well as detailed HZB contributions to this conference [**] into context. It outlines strategies providing appropriate digital tools at a successor 4th generation light source BESSY III.
[*] R. Müller, et.al. https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL02 [**] covering digital twins, Bluesky, sample environment, motion control, remote access, meta data |
||
Slides MO2AO04 [2.522 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO04 | |
About • | Received ※ 05 October 2023 — Revised ※ 26 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 16 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO10 | SECoP Integration for the Ophyd Hardware Abstraction Layer | 1212 |
|
||
At the core of the Bluesky experimental control ecosystem the ophyd hardware abstraction, a consistent high-level interface layer, is extremely powerful for complex device integration. It introduces the device data model to EPICS and eases integration of alien control protocols. This paper focuses on the integration of the Sample Environment Communication Protocol (SECoP)* into the ophyd layer, enabling seamless incorporation of sample environment hardware into beamline experiments at photon and neutron sources. The SECoP integration was designed to have a simple interface and provide plug-and-play functionality while preserving all metadata and structural information about the controlled hardware. Leveraging the self-describing characteristics of SECoP, automatic generation and configuration of ophyd devices is facilitated upon connecting to a Sample Environment Control (SEC) node. This work builds upon a modified SECoP-client provided by the Frappy framework**, intended for programming SEC nodes with a SECoP interface. This paper presents an overview of the architecture and implementation of the ophyd-SECoP integration and includes examples for better understanding.
*Klaus Kiefer et al. "An introduction to SECoP - the sample environment communication protocol". **Markus Zolliker and Enrico Faulhaber url: https://github.com/sampleenvironment/Frappy. |
||
Slides THMBCMO10 [0.596 MB] | ||
Poster THMBCMO10 [0.809 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO10 | |
About • | Received ※ 05 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 14 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP014 | SECoP and SECoP@HMC - Metadata in the Sample Environment Communication Protocol | 1322 |
|
||
Funding: The project SECoP@HMC receives funding by the Helmholtz Association’s Initiative and Networking Fund (IVF). The integration of sample environment (SE) equipment in x-ray and neutron experiments is a complex challenge both in the physical world and in the digital world. Dif-ferent experiment control software offer different interfac-es for the connection of SE equipment. Therefore, it is time-consuming to integrate new SE or to share SE equipment between facilities. To tackle this problem, the International Society for Sample Environment (ISSE, [1]) developed the Sample Environment Communication Protocol (SECoP) to standardize the communication between instrument control software and SE equipment [2]. SECoP offers, on the one hand, a generalized way to control SE equipment. On the other hand, SECoP holds the possibility to transport SE metadata in a well-defined way. In addition, SECoP provides machine readable self-description of the SE equipment which enables a fully automated integration into the instrument control soft-ware and into the processes for data storage. Using SECoP as a common standard for controlling SE equipment and generating SE metadata will save resources and intrinsi-cally give the opportunity to supply standardized and FAIR data compliant SE metadata. It will also supply a well-defined interface for user-provided SE equipment, for equipment shared by different research facilities and for industry. In this article will show how SECoP can help to provide a meaningful and complete set of metadata for SE equipment and we will present SECoP and the SECoP@HMC project supported by the Helmholtz Metadata Collaboration. *K. Kiefer, et al. (2020). An introduction to SECoP - the sample environment communication protocol. Journal of Neutron Research, 21(3-4), pp.181-195 |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP014 | |
About • | Received ※ 06 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |