Paper | Title | Page |
---|---|---|
MO2AO03 | The Solid Sample Scanning Workflow at the European XFEL | 78 |
|
||
The fast solid sample scanner (FSSS) used at the HED instrument of the European XFEL (EuXFEL) enables data collection from multiple samples mounted into standardized frames which can be exchanged via a transfer system without breaking the interaction chamber vacuum. In order to maximize the effective target shot repetition rate, it is a key requirement to use sample holders containing pre-aligned targets measured on an accurate level of a few micrometers. This contribution describes the automated sample delivery workflow for performing solid sample scanning using the FSSS. This workflow covers the entire process, from automatically identifying target positions within the sample, using machine learning algorithms, to set the parameters needed to perform the scans. The integration of this solution into the EuXFEL control system, Karabo, not only allows to control and perform the scans with the existing scan tool but also provides tools for image annotation and data acquisition. The solution thus enables the storage of data and metadata for future correlation across a variety of beamline parameters set during the experiment. | ||
Slides MO2AO03 [12.892 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO03 | |
About • | Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 20 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP033 | Applying Model Predictive Control to Regulate Thermal Stability of a Hard X-ray Monochromator Using the Karabo SCADA Framework | 579 |
|
||
Model Predictive Control (MPC) is an advanced method of process control whereby a model is developed for a real-life system and an optimal control solution is then calculated and applied to control the system. At each time step, the MPC controller uses the system model and system state to minimize a cost function for optimal control. The Karabo SCADA Framework is a distributed control system developed specifically for European XFEL facility, consisting of tens of thousands of hardware and software devices and over two million attributes to track system state. This contribution describes the application of the Python MPC Toolbox within the Karabo SCADA Framework to solve a monochromator temperature control problem. Additionally, the experiences gained in this solution have led to a generic method to apply MPC to any group of Karabo SCADA devices. | ||
Poster TUPDP033 [0.337 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP033 | |
About • | Received ※ 05 October 2023 — Revised ※ 18 October 2023 — Accepted ※ 04 December 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TH1BCO06 | The Karabo Control System | 1120 |
|
||
The Karabo distributed control system has been developed to address the challenging requirements of the European X-ray Free Electron Laser facility*, which include custom-made hardware, and high data rates and volumes. Karabo implements a broker-based SCADA environment**. Extensions to the core framework, called devices, provide control of hardware, monitoring, data acquisition and online processing on distributed hardware. Services for data logging and for configuration management exist. The framework exposes Python and C++ APIs, which enable developers to quickly respond to requirements within an efficient development environment. An AI driven device code generator facilitates prototyping. Karabo’s GUI features an intuitive, coding-free control panel builder. This allows non-software engineers to create synoptic control views. This contribution introduces the Karabo Control System out of the view of application users and software developers. Emphasis is given to Karabo’s asynchronous Python environment. We share experience of running the European XFEL using a clean-sheet developed control system, and discuss the availability of the system as free and open source software.
* Tschentscher, et al. Photon beam transport and scientific instruments at the European XFEL App. Sci.7.6(2017):592 ** Hauf, et al. The Karabo distributed control system J.Sync. Rad.26.5(2019):1448ff |
||
Slides TH1BCO06 [5.878 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO06 | |
About • | Received ※ 06 October 2023 — Accepted ※ 03 December 2023 — Issued ※ 12 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP024 | Automatic Configuration of Motors at the European XFEL | 1358 |
|
||
The European XFEL (EuXFEL) scientific facility relies heavily on the SCADA control system Karabo* to configure and control a plethora of hardware devices. In this contribution a software solution for automatic configuration of collections of like Karabo devices is presented. Parameter presets for the automatic configuration are stored in a central database. In particular, the tool is used in the configuration of collections of single-axis motors, which is a recurring task at EuXFEL. To facilitate flexible experimental setup, motors are moved within the EuXFEL and reused at various locations in the operation of scientific instruments. A set of parameters has to be configured for each motor controller, depending on the controller and actuator model attached to a given programmable logic controller terminal, and the location of the motor. Since manual configurations are time-consuming and error-prone for large numbers of devices, a database-driven configuration of motor parameters is desirable. The software tool allows to assign and apply stored preset configurations to individual motors. Differences between the online configurations of the motors and the stored configurations are highlighted. Moreover, the software includes a "locking" feature to prevent motor usage after unintentional reconfigurations, which could lead to hardware damage.
* Hauf, Steffen, et al. "The Karabo distributed control system." Journal of synchrotron radiation 26.5 (2019): 1448-1461. |
||
Poster THPDP024 [0.549 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP024 | |
About • | Received ※ 05 October 2023 — Revised ※ 25 October 2023 — Accepted ※ 13 December 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |