Paper | Title | Page |
---|---|---|
MO4BCO04 | Improving Control System Software Deployment at MAX IV | 201 |
|
||
The control systems of large research facilities like synchrotrons are composed of many different hardware and software parts. Deploying and maintaining such systems require proper workflows and tools. MAX IV has been using Ansible to manage and deploy its full control system, both software and infrastructure, for many years with great success. We detail further improvements: defining Tango devices as configuration, and automated deployment of specific packages when tagging Gitlab repos. We have now adopted Conda as our primary packaging tool instead of the Red Hat Package Manager (RPM). This allows us to keep up with the rapidly changing Python ecosystem, while at the same time decoupling Operating System upgrades from the control system software. For better management, we have developed a Prometheus-based tool that reports on the installed versions of each package on each machine. This paper will describe our workflow and discuss the benefits and drawbacks of our approach. | ||
Slides MO4BCO04 [1.969 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04 | |
About • | Received ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 26 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP145 | Position-Based Continuous Energy Scan Status at MAX IV | 917 |
|
||
The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations. | ||
Poster TUPDP145 [1.943 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145 | |
About • | Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TH1BCO03 | The Tango Controls Collaboration Status in 2023 | 1100 |
|
||
Since 2021 the Tango Controls collaboration has improved and optimised its efforts in many areas. Not only have Special Interest Group meetings (SIGs) been introduced to speed up the adoption of new technologies or improvements, the kernel has switched to a fixed six-month release cycle for quicker adoption of stable kernel versions by the community. CI/CD provides now early feedback on test failures and compatibility issues. Major code refactoring allowed for a much more efficient use of developer resources. Relevant bug fixes, improvements and new features are now adopted at a much higher rate than ever before. The community participation has also noticeably improved. The kernel switched to C++14 and the logging system is undergoing a major refactoring. Among many new features and tools is jupyTango, Jupyter Notebooks on Tango Controls steroids. PyTango is now easy to install via binary wheels, old Python versions are no longer supported, the build-system is switching to CMake, and releases are now made much closer to stable cppTango releases. | ||
Slides TH1BCO03 [1.357 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH1BCO03 | |
About • | Received ※ 05 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 21 November 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THMBCMO09 |
DAQ System Based on Sardana and PandABox for Combined SAXS, Fluorescence and UV-Vis Spectroscopy Techniques at MAX IV CoSAXS Beamline | |
|
||
CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. This paper presents the data acquisition (DAQ) strategy for combined SAXS, Ultraviolet-visible (UV-Vis) and Fluorescence Spectroscopy techniques. In general terms, the beamline control system is based on TANGO and on top of it, Sardana provides an advanced scan framework. Sardana performs the experiment orchestration, configuring and preparing the X-ray detector and the Spectrometers for UV-Vis and Fluorescence. Hardware triggers are used to synchronize the DAQ for the different techniques running simultaneously. The implementation is done using PandABox, which generates pulse trains for the X-ray detector and spectrometers. PandABox integration into the system is done with a Sardana Trigger Gate Controller, used to configure the pulse trains parameters as well to orchestrate the hardware triggers during a scan. This paper describes the individual techniques’ integration into the control system, the experiment orchestration and synchronization and the new experiment possibilities this multi-technique DAQ system brings to MAX IV beamlines. | ||
Slides THMBCMO09 [0.570 MB] | ||
Poster THMBCMO09 [1.600 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |