Paper | Title | Page |
---|---|---|
MO3AO02 | Implementation of Model Predictive Control for Slow Orbit Feedback Control in MAX IV Accelerators Using PyTango Framework | 116 |
|
||
Achieving low emittance and high brightness in modern light sources requires stable beams, which are commonly achieved through feedback solutions. The MAX IV light source has two feedback systems, Fast Orbit Feedback (FOFB) and Slow Orbit Feedback (SOFB), operating in overlapping frequency regions. Currently in MAX IV, a general feedback device implemented in PyTango is used for slow orbit and trajectory correction, but an MPC controller for the beam orbit has been proposed to improve system robustness. The controller uses iterative optimisation of the system model, current measurements, dynamic states and system constraints to calculate changes in the controlled variables. The new device implements the MPC model according to the beam orbit response matrix, subscribes to change events on all beam position attributes and updates the control signal given to the slow magnets with a 10 Hz rate. This project aims to improve system robustness and reduce actuator saturation. The use of PyTango simplifies the implementation of the MPC controller by allowing access to high-level optimisation and control packages. This project will contribute to the development of a high-quality feedback control system for MAX IV accelerators. | ||
Slides MO3AO02 [4.234 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO3AO02 | |
About • | Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 19 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MO4BCO04 | Improving Control System Software Deployment at MAX IV | 201 |
|
||
The control systems of large research facilities like synchrotrons are composed of many different hardware and software parts. Deploying and maintaining such systems require proper workflows and tools. MAX IV has been using Ansible to manage and deploy its full control system, both software and infrastructure, for many years with great success. We detail further improvements: defining Tango devices as configuration, and automated deployment of specific packages when tagging Gitlab repos. We have now adopted Conda as our primary packaging tool instead of the Red Hat Package Manager (RPM). This allows us to keep up with the rapidly changing Python ecosystem, while at the same time decoupling Operating System upgrades from the control system software. For better management, we have developed a Prometheus-based tool that reports on the installed versions of each package on each machine. This paper will describe our workflow and discuss the benefits and drawbacks of our approach. | ||
Slides MO4BCO04 [1.969 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO4BCO04 | |
About • | Received ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 26 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP083 | DAQ System Based on Tango, Sardana and PandABox for Millisecond Time Resolved Experiment at the CoSAXS Beamline of MAX IV Laboratory | 713 |
|
||
CoSAXS is the Coherent and Small Angle X-ray Scattering (SAXS) beamline placed at the diffraction-limited 3 GeV storage ring at MAX IV Laboratory. The beamline can deliver a very high photon flux ~1013 ph/s and it is equipped with state-of-the-art pixel detectors, suitable for experiments with a high time-resolution to be performed. In this work we present the upgraded beamline data acquisition strategy for a millisecond time-resolved SAXS/WAXS experiment, using laser light to induce temperature jumps or UV-excitation with the consequent structural changes on the system. In general terms, the beamline control system is based on TANGO and built on top of it, Sardana provides an advanced scan framework. In order to synchronize the laser light pulse on the sample, the X-ray fast shutter opening time and the X-ray detectors readout, hardware triggers are used. The implementation is done using PandABox, which generates the pulse train for the laser and for all active experimental channels, such as counters and detectors, in synchronization with the fast shutter opening time. PandABox integration is done with a Sardana Trigger Gate Controller, used to configure the pulses parameters as well to orchestrate the hardware triggers during a scan. This paper describes the experiment orchestration, laser light synchronization with multiple X-ray detector. | ||
Poster TUPDP083 [1.645 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP083 | |
About • | Received ※ 06 October 2023 — Accepted ※ 11 December 2023 — Issued ※ 13 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP084 |
Control System for the MAX IV Transverse Deflecting Cavity Beamline | |
|
||
The MAX IV 3 GeV LINAC serves as a full-energy injector for two electron storage rings and as a driver for the Short Pulse Facility (SPF) and a future Soft X-ray Laser (SXL). To achieve high temporal resolution for longitudinal beam characterization, a transverse deflecting cavity (TDC) system has been developed and installed in a dedicated electron beamline downstream of the LINAC. The TDC beamline comprises two consecutive 3 m long transverse S-band RF structures, followed by a variable vertical deflector dipole magnet used as an energy spectrometer. In this paper, we present the newly implemented control system and scanning routines for data acquisition and analyses. The control system enables precise manipulation of the TDC system, ensuring accurate measurement of longitudinal beam characteristics. The scanning routines facilitate systematic data acquisition for comprehensive beam analysis. | ||
Poster TUPDP084 [0.468 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPDP145 | Position-Based Continuous Energy Scan Status at MAX IV | 917 |
|
||
The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations. | ||
Poster TUPDP145 [1.943 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145 | |
About • | Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TH2BCO01 | Synchronized Nonlinear Motion Trajectories at MAX IV Beamlines | 1160 |
|
||
The motions at beamlines sometimes require components to move along non-trivial and non-linear paths. This type of motion can be achieved by combining several simple axes, typically linear and rotation actuators, and controlling them to perform synchronized motions along individual non-linear paths. A good example is the 10-meter-long spectrometer at MAX IV Veritas beamline, operating under the Rowland condition. The system consists of 6 linked axes that must maintain the position of detectors while avoiding causing any damage to the mechanical structure. The nonlinear motions are constructed as a trajectory through energy or focus space. The trajectory changes whenever any parameter changes or when moving through focus space at fixed energy instead of through energy space. Such changes result in automated generation and uploading of new trajectories. The motion control is based on parametric trajectory functionality provided by IcePAP. Scanning and data acquisition are orchestrated through Tango and Sardana to ensure full motion synchronization and that triggers are issued correctly. | ||
Slides TH2BCO01 [0.884 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TH2BCO01 | |
About • | Received ※ 05 October 2023 — Revised ※ 24 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 22 December 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPDP054 |
Fast, Fully Automated Continuous Energy Scan at the Biomax Beamline at Max IV Laboratory | |
|
||
BioMAX is an X-ray macromolecular crystallography (MX) beamline* at MAX IV Laboratory that delivers an X-ray beam with a photon flux of up to 1e13 ph/s. The photon energy at the beamline can be easily adjusted between 6 keV and 24 keV. At MX beamlines Single- and Multi-wavelength Anomalous Dispersion (SAD and MAD) methods are used for experimental phasing to reconstruct the macromolecular structures. To be able to benefit from these techniques, it is imperative for an MX beamline to have a fast and automated energy scan routine. This contribution reports on the newly implemented continuous energy scan procedure at BioMAX. The scan routine performs a synchronous motion of the undulator and monochromator motors to continuously scan the energy while measuring the fluorescence from the sample as the energy changes. The data acquisition during the scan is triggered by the actual energy value which is monitored throughout the scan at 1 MHz rate. The energy scan routine is fully automated and minimizes the radiation damage on the sample during the measurements. The scan itself is as short as one second making the overall procedure a factor of five faster than a conventional step scan.
* Ursby T. et al. "BioMAX - the first macromolecular crystallography beamline at MAX IV Laboratory." Journal of Synchrotron Radiation 27, 1415 - 1729, (2020). |
||
Poster THPDP054 [4.700 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |