Author: Bellan, L.
Paper Title Page
TUPDP080 Automated Procedure for Conditioning of Normal Conducting Accelerator Cavities 699
 
  • E. Trachanas, G.S. Fedel, S. Haghtalab, B. Jones, R.H. Zeng
    ESS, Lund, Sweden
  • C. Baltador, L. Bellan, F. Grespan
    INFN/LNL, Legnaro (PD), Italy
  • A. Gaget, O. Piquet
    CEA-DRF-IRFU, France
 
  Radio frequency (RF) conditioning is an essential stage during the preparation of particle accelerator cavities for operation. During this process the cavity field is gradually increased to the nominal parameters enabling the outgassing of the cavity and the elimination of surface defects through electrical arcing. However, this process can be time-consuming and labor-intensive, requiring skilled operators to carefully adjust the RF parameters. This proceeding presents the software tools for the development of an automatized EPICS control application with the aim to accelerate and introduce flexibility to the conditioning process. The results from the conditioning process of the ESS Radio-Frequency Quadrupole (RFQ) and the parallel conditioning of Drift-Tube Linac (DTL) tanks will be presented demonstrating the potential to save considerable time and resources in future RF conditioning campaigns.  
poster icon Poster TUPDP080 [17.411 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP080  
About • Received ※ 04 October 2023 — Accepted ※ 12 December 2023 — Issued ※ 13 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP028 Particle Swarm Optimization Techniques for Automatic Beam Transport at the Lnl Superconducting Linac Accelerators 1370
 
  • M. Montis, L. Bellan
    INFN/LNL, Legnaro (PD), Italy
 
  The superconductive quarter wave cavities hadron Lin-ac ALPI is the final acceleration stage at the Legnaro National Laboratories and it is going to be used as re-acceleration line of the radioactive ion beams for the SPES (Selective Production of Exotic Species) project. The Linac was designed in ’90s with the available techniques and it was one of the peak technologies of this kind in Europe at those times, controls included. In the last decade, controls related to all the functional systems composing the accelerator have been ungraded to an EPICS-based solution. This upgrade has given us the opportunity to design and test new possible solutions for automatic beam transport. The work described in this paper is based on the experience and results (in terms of time, costs, and manpower) obtained using Particle Swarm Optimization (PSO) techniques for beam transport optimization applied to the ALPI accelerator. Due to the flexibility and robustness of this method, this tool will be extended to other parts of the facility.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP028  
About • Received ※ 06 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 10 December 2023 — Issued ※ 16 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)