Author: Barnes, A.I.
Paper Title Page
MO2BCO06 Embedded Controller Software Development Best Practices at the National Ignition Facility 54
 
  • V.K. Gopalan, A.I. Barnes, C.M. Estes, J.M. Fisher, V.J. Hernandez, P. Kale, A. Pao, P.K. Singh
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Software development practices such as continuous integration and continuous delivery (CI/CD) are widely adopted by the National Ignition Facility (NIF) which helps to automate the software development, build, test, and deployment processes. However, using CI/CD in an embedded controller project poses several challenges due to the limited computing resources such as processing power, memory capacity and storage availability in such systems. This paper will present how CI/CD best practices were tailored and used to develop and deploy software for one of the NIF Master Oscillator Room (MOR) embedded controllers, which is based on custom designed hardware consisting of a microcontroller and a variety of laser sensors and drivers. The approach included the use of automated testing frameworks, customized build scripts, simulation environments, and an optimized build and deployment pipeline, leading to quicker release cycles, improved quality assurance and quicker defect correction. The paper will also detail the challenges faced during the development and deployment phases and the strategies used to overcome them. The experience gained with this methodology on a pilot project demonstrated that using CI/CD in embedded controller projects can be challenging, yet feasible with the right tools and strategies, and has the potential to be scaled and applied to the vast number of embedded controllers in the NIF control system.
LLNL Release Number: LLNL-ABS-848418
 
slides icon Slides MO2BCO06 [1.346 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2BCO06  
About • Received ※ 29 September 2023 — Revised ※ 12 October 2023 — Accepted ※ 14 November 2023 — Issued ※ 30 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE2BCO02 In the Midst of Fusion Ignition: A Look at the State of the National Ignition Facility Control and Information Systems 973
 
  • M. Fedorov, A.I. Barnes, L. Beaulac, A.D. Casey, J.R. Castro Morales, J. Dixon, C.M. Estes, M.S. Flegel, V.K. Gopalan, S. Heerey, R. Lacuata, V.J. Miller Kamm, B.P. Patel, M. Paul, N.I. Spafford, J.L. Vaher
    LLNL, Livermore, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s largest and most energetic 192-laser-beam system which conducts experiments in High Energy Density (HED) physics and Inertial Confinement Fusion (ICF). In December 2022, the NIF achieved a scientific breakthrough when, for the first time ever, the ICF ignition occurred under laboratory conditions. The key to the NIF’s experimental prowess and versatility is not only its power but also its precise control. The NIF controls and data systems place the experimenter in full command of the laser and target diagnostics capabilities. The recently upgraded Master Oscillator Room (MOR) system precisely shapes NIF laser pulses in the temporal, spatial, and spectral domains. Apart from the primary 10-meter spherical target chamber, the NIF laser beams can now be directed towards two more experimental stations to study laser interactions with optics and large full beam targets. The NIF’s wide range of target diagnostics continues to expand with new tools to probe and capture complex plasma phenomena using x-rays, gamma-rays, neutrons, and accelerated protons. While the increasing neutron yields mark the NIF’s steady progress towards exciting experimental regimes, they also require new mitigations for radiation damage in control and diagnostic electronics. With many NIF components approaching 20 years of age, a Sustainment Plan is now underway to modernize NIF, including controls and information systems, to assure NIF operations through 2040.
LLNL Release Number: LLNL-ABS-847574
 
slides icon Slides WE2BCO02 [4.213 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE2BCO02  
About • Received ※ 02 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 14 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WE3AO02 High Fidelity Pulse Shaping for the National Ignition Facility 1058
 
  • A.S. Gowda, A.I. Barnes, B.W. Buckley, A. Calonico-Soto, E.J. Carr, J.T. Chou, P.T. Devore, J.-M.G. Di Nicola, V.K. Gopalan, J. Heebner, V.J. Hernandez, R.D. Muir, A. Pao, L. Pelz, L. Wang, A.T. Wargo
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s most energetic laser capable of delivering 2.05MJ of energy with peak powers up to 500 terawatts on targets a few mms in diameter. This enables extreme conditions in temperature and pressure allowing a wide variety of exploratory experiments from triggering fusion ignition to emulating temperatures at the center of stars or pressures at the center of giant planets. The capability enabled the groundbreaking results of December 5th, 2022 when scientific breakeven in fusion was demonstrated with a target gain of 1.5. A key aspect of supporting various experiments at NIF is the ability to custom shape the pulses of the 48 quads independently with high fidelity as needed by the experimentalists. For more than 15 years, the Master Oscillator Room’s (MOR) pulse shaping system has served NIF well. However, a pulse shaping system that would provide higher shot-to-shot stability, better power balance and accuracy across the 192 beams is required for future NIF experiments including ignition. The pulse shapes requested vary drastically at NIF which led to challenging requirements for the hardware, timing and closed loop shaping systems. In the past two years, a High-Fidelity Pulse Shaping System was designed, and a proof-of-concept system was shown to meet all requirements. This talk will discuss design challenges, solutions and how modernization of the pulse shaping hardware helped simple control algorithms meet the stringent requirements set by the experimentalists.
LLNL Release Number: LLNL-ABS-848060
 
slides icon Slides WE3AO02 [6.678 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-WE3AO02  
About • Received ※ 04 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)