Author: Ashton, A.
Paper Title Page
MO2AO02 A Beamline and Experiment Control System for the SLS 2.0 71
 
  • K. Wakonig, C. Appel, A. Ashton, S. Augustin, M. Holler, I. Usov, J. Wyzula, X. Yao
    PSI, Villigen PSI, Switzerland
 
  The beamlines of the Swiss Light Source (SLS) predominantly rely on EPICS standards as their control interface but in contrast to many other facilities, there is up to now no standardized user interfacing component to orchestrate, monitor and provide feedback on the data acquisition. As a result, the beamlines have either adapted community solutions or developed their own high-level orchestration system. For the upgrade project SLS 2.0, a sub-project was initiated to facilitate a unified beamline and experiment control system. During a pilot phase and a first development cycle, libraries of the Bluesky project were used, combined with additional in-house developed services, and embedded in a service-based approach with a message broker and in-memory database. Leveraging the community solutions paired with industry standards, enabled the development of a highly modular system which provides the flexibility needed for a constantly changing scientific environment. One year after the development started, the system was already tested during many weeks of user operation and recently received the official approval by the involved divisions to be rolled out as part of the SLS 2.0 upgrade.  
slides icon Slides MO2AO02 [3.119 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-MO2AO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THMBCMO02 Enhancing Data Management with SciCat: A Comprehensive Overview of a Metadata Catalogue for Research Infrastructures 1195
 
  • C. Minotti, A. Ashton, S.E. Bliven, S. Egli
    PSI, Villigen PSI, Switzerland
  • F.B. Bolmsten, M. Novelli, T.S. Richter
    ESS, Lund, Sweden
  • M. Leorato
    MAX IV Laboratory, Lund University, Lund, Sweden
  • D. McReynolds
    LBNL, Berkeley, California, USA
  • L.A. Shemilt
    RFI, Didcot, United Kingdom
 
  As the volume and quantity of data continue to increase, the role of data management becomes even more crucial. It is essential to have tools that facilitate the management of data in order to manage the ever-growing amount of data. SciCat is a metadata catalogue that utilizes a NoSQL database, enabling it to accept heterogeneous data and customize it to meet the unique needs of scientists and facilities. With its API-centric architecture, SciCat simplifies the integration process with existing infrastructures, allowing for easy access to its capabilities and seamless integration into workflows, including cloud-based systems. The session aims to provide a comprehensive introduction of SciCat, a metadata catalogue started as a collaboration between PSI, ESS, and MAXIV, which has been adopted by numerous Research Infrastructures (RIs) worldwide. The presentation will delve into the guiding principles that underpin this project and the challenges that it endeavours to address. Moreover, it will showcase the features that have been implemented, starting from the ingestion of data to its eventual publication. Given the growing importance of the FAIR (Findable, Accessible, Interoperable, and Reusable) principles, the presentation will touch upon how their uptake is facilitated and will also provide an overview of the work carried out under the Horizon 2020 EU grant for FAIR.  
slides icon Slides THMBCMO02 [5.158 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THMBCMO02  
About • Received ※ 05 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 December 2023 — Issued ※ 20 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPDP073 Scilog: A Flexible Logbook System for Experiment Data Management 1512
 
  • K. Wakonig, A. Ashton, C. Minotti
    PSI, Villigen PSI, Switzerland
 
  Capturing both raw and metadata during an experiment is of the utmost importance, as it provides valuable context for the decisions made during the experiment and the acquisition strategy. However, logbooks often lack seamless integration with facility-specific services such as authentication and data acquisition systems and can prove to be a burden, particularly in high-pressure situations during experiments. To address these challenges, SciLog has been developed as a logbook system utilizing MongoDB, Loopback, and Angular. Its primary objective is to provide a flexible and extensible environment, as well as a user-friendly interface. SciLog relies on atomic entries in a NoSQL database that can be easily queried, sorted, and displayed according to the user’s requirements. The integration with facility-specific authorization systems and the automatic import of new experiment proposals enable a user experience that is specifically tailored for the challenging environment of experiments conducted at large research facilities. The system is currently in use during beam time at the Paul Scherrer Institut, where it is collecting valuable feedback from scientists to enhance its capabilities.  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-THPDP073  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 08 December 2023 — Issued ※ 11 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1BCO04 The Controls and Science IT Project for the SLS 2.0 Upgrade 1616
 
  • A. Ashton, H.-H. Braun, S. Fries, X. Yao, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  Operation of the Swiss Light Source (SLS) at the Paul Scherrer Institue (PSI) in Switzerland began in 2000 and it quickly became one of the most successful synchrotron radiation facilities worldwide, providing academic and industry users with a suite of excellent beamlines covering a wide range of methods and applications. To maintain the SLS at the forefront of synchrotron user facilities and to exploit all of the improvement opportunities, PSI prepared a major upgrade project for SLS, named SLS 2.0. The Controls and Science IT (CaSIT) subproject was established to help instigate a project management structure to facilitate new concepts, increased communication, and clarify budgetary responsibility. This article focusses on the progress being made to exploit the current technological opportunities offered by a break in operations whilst taking into consideration future growth opportunities and realistic operational support within an academic research facility.  
slides icon Slides FR1BCO04 [6.389 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-ICALEPCS2023-FR1BCO04  
About • Received ※ 05 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 20 November 2023 — Issued ※ 17 December 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)