Paper |
Title |
Page |
TUPDP145 |
Position-Based Continuous Energy Scan Status at MAX IV |
917 |
|
- Á. Freitas, N.S. Al-Habib, B. Bertrand, M. Eguiraun, I. Gorgisyan, A.F. Joubert, J. Lidón-Simon, M. Lindberg, C. Takahashi
MAX IV Laboratory, Lund University, Lund, Sweden
|
|
|
The traditional approach of step scanning in X-ray experiments is often inefficient and may increase the risk of sample radiation damage. In order to overcome these challenges, a new position-based continuous energy scanning system has been developed at MAX IV Laboratory. This system enables stable and repeatable measurements by continuously moving the motors during the scan. Triggers are generated in hardware based on the motor encoder positions to ensure precise data acquisition. Prior to the scan, a list of positions is generated, and triggers are produced as each position is reached. The system uses Tango and Sardana for control and a TriggerGate controller to calculate motor positions and configure the PandABox, which generates the triggers. The system is capable of scanning a single motor, such as a sample positioner, or a combined motion like a monochromator and undulator. In addition, the system can use the parametric trajectory mode of IcePAP driver, which enables continuous scans of coupled axes with non-linear paths. This paper presents the current status of the position-based continuous energy scanning system for BioMAX, FlexPES, and FinEst beamlines at MAX IV and discusses its potential to enhance the efficiency and accuracy of data acquisition at beamline endstations.
|
|
|
Poster TUPDP145 [1.943 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-ICALEPCS2023-TUPDP145
|
|
About • |
Received ※ 05 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 29 November 2023 — Issued ※ 11 December 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|