JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WE1BCO05: High Accuracy and Cost-Efficient Ethernet-Based Timing System for the IFMIF-DONES Facility

@unpublished{diaz:icalepcs2023-we1bco05,
  author       = {J. Díaz and I.C. Casero and C. Megías},
  title        = {{High Accuracy and Cost-Efficient Ethernet-Based Timing System for the IFMIF-DONES Facility}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  language     = {english},
  intype       = {presented at the},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  venue        = {Cape Town, South Africa},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  note         = {presented at ICALEPCS'23 in Cape Town, South Africa, unpublished},
  abstract     = {{This article presents the timing system design of the IFMIF-DONES facility, which aims to develop materials that can withstand the harsh conditions of a fusion reactor while maintaining their structural integrity and functional properties. A key goal is to achieve high availability, which requires strong resiliency and redundancy measures throughout the plant design. The timing system design starts with a master clock composed of a stable master oscillator combined with GNSS receiver and clock disciplining equipment. They generate a local time scale and reference frequency with high stability. Three different Ethernet-based protocols are then combined, including NTP, IEEE-1588-2008 & 2019 High Accuracy profile (White-Rabbit) for time transfer purposes. NTP is used for generic computers and industrial devices that lack significant timing constraints, while IEEE-1588-2008 is used for industrial devices that require 1us accuracy or better. Both techniques can be implemented using off-the-shelf equipment and operate well over networks with moderate bandwidth utilization. The White-Rabbit protocol is used for devices that require highly accurate timing and can achieve sub-ns accuracy. It is typically designed for small, dedicated networks for timing only. This contribution describes the design of this timing system, highlighting how the best trade-off between cost and performance can be achieved through Ethernet technologies and how resiliency methods are implemented. }},
}