JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUPDP091: Upgrade of the Process Control System for the Cryogenic Installation of the CERN LHC Atlas Liquid Argon Calorimeter

@inproceedings{fluder:icalepcs2023-tupdp091,
  author       = {C.F. Fluder and C. Fabre and L.G. Goralczyk and K.M. Mastyna and M. Pezzetti and A. Zmuda},
  title        = {{Upgrade of the Process Control System for the Cryogenic Installation of the CERN LHC Atlas Liquid Argon Calorimeter}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {752--757},
  paper        = {TUPDP091},
  language     = {english},
  keywords     = {controls, PLC, cryogenics, software, operation},
  venue        = {Cape Town, South Africa},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  issn         = {2226-0358},
  isbn         = {978-3-95450-238-7},
  doi          = {10.18429/JACoW-ICALEPCS2023-TUPDP091},
  url          = {https://jacow.org/icalepcs2023/papers/tupdp091.pdf},
  abstract     = {{The ATLAS (LHC detector) Liquid Argon Calorimeter is classified as a critical cryogenic system due to its requirement for uninterrupted operation. The system has been in continuous nominal operation since the start-up of the LHC, operating with very high reliability and availability. Over this period, control system maintenance was focused on the most critical hardware and software interventions, without direct impact on the process control system. Consequently, after several years of steady state operation, the process control system became obsolete (reached End of Life), requiring complex support and without the possibility of further improvements. This led to a detailed review towards a complete upgrade of the PLC hardware and process control software. To ensure uninterrupted operation, longer equipment lifecycle, and further system maintainability, the latest technology was chosen. This paper presents the methodology used for the process control system upgrade during development and testing phases, as well as the experience gained during deployment. It details the architecture of the new system based on a redundant (Hot Standby) PLC solution, the quality assurance protocol used during the hardware validation and software testing phases, and the deployment procedure.}},
}