JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for THPDP015: Status of the MicroTCA Based Beam Instrumentation DAQ Systems at GSI and FAIR

@inproceedings{hoffmann:icalepcs2023-mo4ao07,
  author       = {T. Hoffmann and H. Bräuning and R.N. Geißler and T. Milosic},
  title        = {{Status of the MicroTCA Based Beam Instrumentation DAQ Systems at GSI and FAIR}},
% booktitle    = {Proc. ICALEPCS'23},
  booktitle    = {Proc. 19th Int. Conf. Accel. Large Exp. Phys. Control Syst. (ICALEPCS'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {239--243},
  paper        = {MO4AO07},
  language     = {english},
  keywords     = {timing, hardware, FPGA, detector, instrumentation},
  venue        = {Cape Town, South Africa},
  series       = {International Conference on Accelerator and Large Experimental Physics Control Systems},
  number       = {19},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {02},
  year         = {2024},
  issn         = {2226-0358},
  isbn         = {978-3-95450-238-7},
  doi          = {10.18429/JACoW-ICALEPCS2023-MO4AO07},
  url          = {https://jacow.org/icalepcs2023/papers/mo4ao07.pdf},
  abstract     = {{While the first FAIR accelerator buildings are soon to be completed, MicroTCA-based data acquisition sys-tems for FAIR beam instrumentation are ready for use. By using commercial off-the-shelf components as well as open hardware with in-house expertise in FPGA programming, there are now DAQ solutions for almost all major detector systems in MicroTCA in operation at the existing GSI accelerators. Applications span a wide range of detector systems and hardware, often taking advantage of the high channel density and data trans-mission bandwidth available with MicroTCA. All DAQ systems are synchronised and triggered using a com-prehensive White Rabbit based timing system. This allows correlation of the data from the distributed acquisition systems on a nanosecond scale. In this paper, we present some examples of our DAQ implemented in MicroTCA covering the range of beam current, tune, position and profile measurements. While the latter uses GigE cameras in combination with scintillating screens, the other applications are based on ADCs with different sampling frequencies between 125 MSa/s up to 2.5 GSa/s or latching scalers with up to 10 MHz latching frequency. }},
}