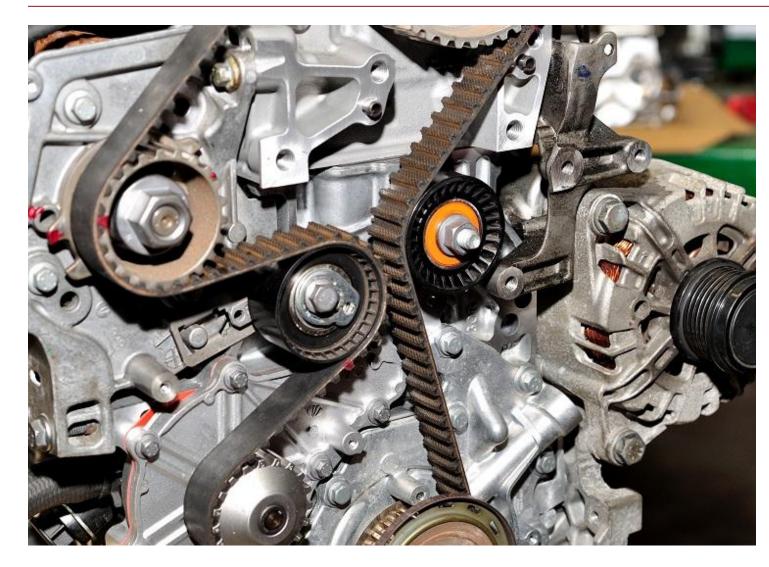
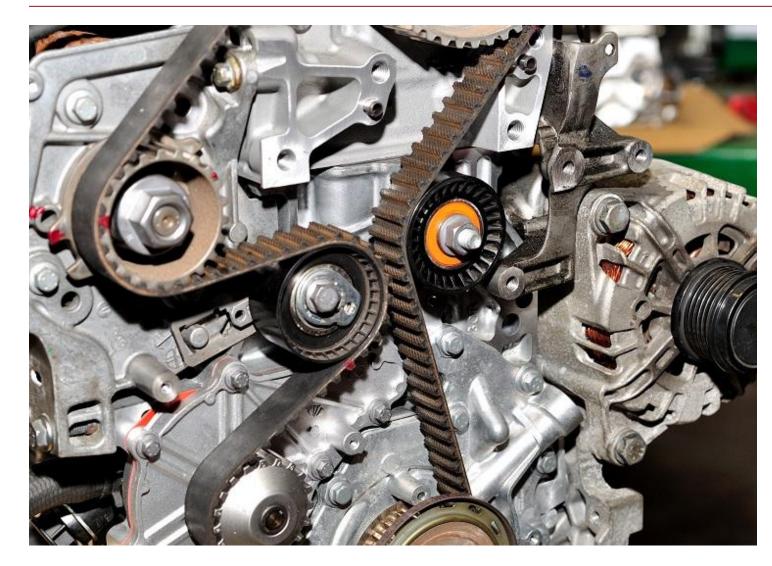
The LCLS-II Precision Timing

Control System

ICALEPCS 2023


Tyler Johnson Control System Engineer LCLS Experiment Control Systems

October 11, 2023


Why do we care about timing?

Timing is everything

- >75% of LCLS experiments require optical lasers
 - Pump-probe
 - "Molecular Movies", etc.
- LCLS X-ray pulses are 100's to 10's of fs long
- LCLS optical laser pulses are of the same order
- Need to establish, maintain, and control the temporal overlap of these two very short pulses

Why do we care about timing?

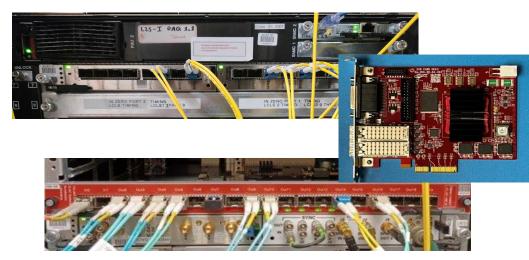
Timing is everything

- >75% of LCLS experiments require optical lasers
 - Pump-probe
 - "Molecular Movies", etc.
- LCLS X-ray pulses are 100's to 10's of fs long
- LCLS optical laser pulses are of the same order
- Need to establish, maintain, and control the temporal overlap of these two very short pulses

<u>Requires precise phase locking</u> <u>and phase control!</u>

A 10,000 ft (3 km) view of LCLS

Multiple facilities, different needs


Event and RF timing is distributed to multiple facilities (AD/LCLS)

- LCLS-I S20 through S30 (approx. 100m/sector)
- FACET S10 through S20
- LCLS-II S0 through S10

Two flavors of timing at LCLS

Event Timing

- LVTTL triggers and CPU interrupts for data acquisition and/or PV processing
- Generator: synchronous timestamps & control on fiber optic distribution system
- Receiver: decodes messages, generates triggers for device control & acquisition

Precision Timing

- Precise (~10's fs) synchronization with XFEL
- RF synchronization of devices via hardware: PLL, FPGA, etc.
- Used for optical drive laser synchronization and delay control w.r.t. the XFEL

Two flavors of timing at LCLS

Event Timing

- LVTTL triggers and CPU interrupts for data acquisition and/or PV processing
- Generator: synchronous timestamps & control on fiber optic distribution system
- Receiver: decodes messages, generates triggers for device control & acquisition

Precision Timing

- Precise (~10's fs) synchronization with XFEL
- RF synchronization of devices via hardware: PLL, FPGA, etc.
- Used for optical drive laser synchronization and delay control w.r.t. the XFEL

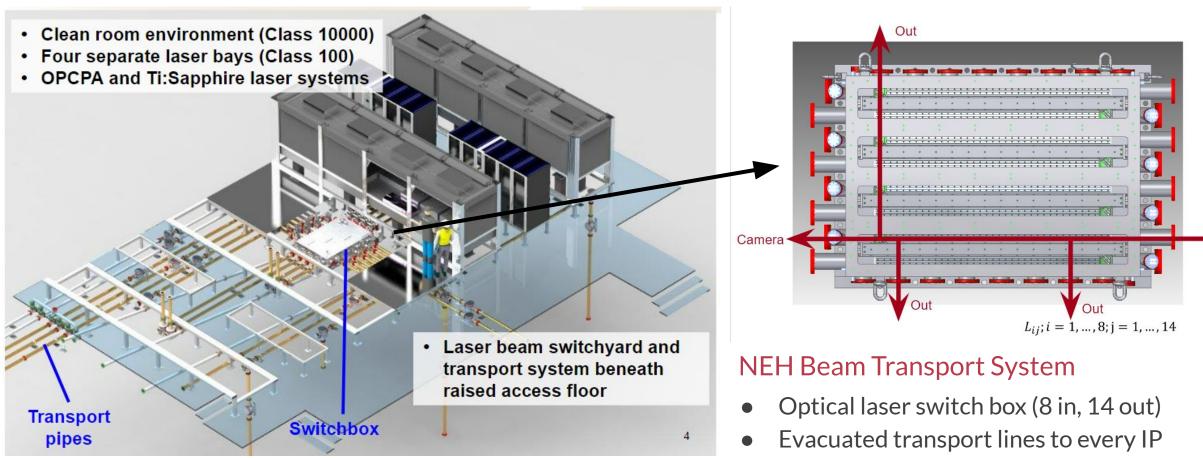
How do we do precision timing?

RF Distribution

SLAC

- RF-Over-Fiber technology
- Commercial systems
- Transmit LCLS RF reference across >5km optical fiber
- Low jitter, low drift

RF Locking

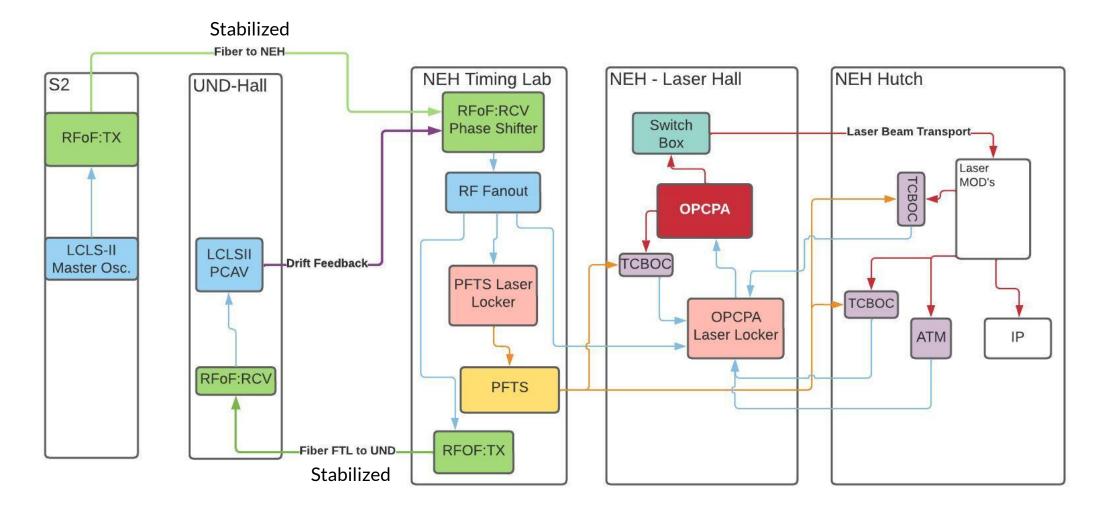

- Phase lock to RF reference
- Based on ATCA Common Platform developed for LCLS-II LINAC
- Delay control for pump-probe experiments

Optical Locking

- Based on commercial optical timing system
- Uses optical, rather than RF, phase comparison
- Provides sub-fs delay control and measurement

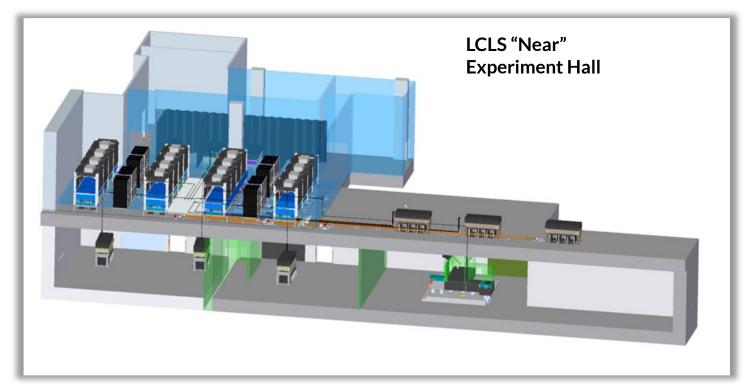
7

Any laser, any hutch



<u>N:M relationship between hutches and the laser and timing systems!</u>

 Supplies optical laser for <u>entire</u> Near Expt. Hall


Putting it all together

What challenges do we face?

Multi-user systems


- LCLS-I lasers and laser lockers are 1:1
 - No "sharing"
- LCLS-II OPCPA laser can be delivered to up to 7 different interaction points
- Up to 4 experiment changes per day
- <u>Goal:</u> allow beamline operators to changeover laser and timing w/out expert assistance
- Need to deconflict shared resources
 - Drive laser
 - Laser locker
 - Stabilized timing links

From Python to EPICS

All EPICS, all the time

- Most beamline automation at LCLS is done via Python
 - ophyd, bluesky, etc
- LCLS-I: EPICS IOC + Python script
 - IOC: basic functions, frequency locking, EPID record
 - Python: high level interface PVs, calibration routine, delay calculations and delay control
- LCLS-II: Why not 100% EPICS?
 - Most of the LCLS-I locker could be handled by EPICS
 - Can have an all in one system application
- <u>Missing capabilities</u>:
 - Mutual exclusion
 - Easy automation procedures

Resource arbitration at the record level

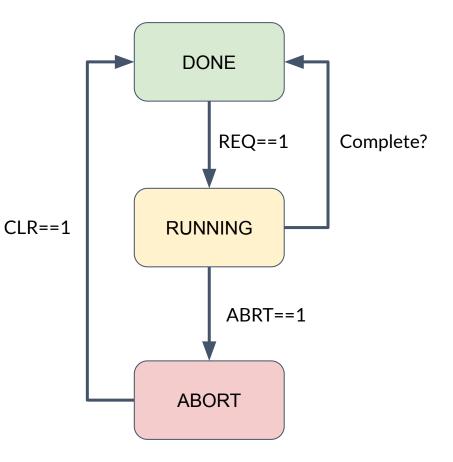
The arbiter record

- 30 separate request lines (potential owners)
- Reports current owner and owned status
- Requests can be cleared and arbiter released
- Used in global and local contexts throughout the PFTS automation system

FIELD	Summary
REQ0 to REQ29	30 long inputs. Write a non-zero value to request the arbiter, and zero to release it (or cancel the request).
OWN0 to OWN29	30 string input links. These describe the thirty input requests.
OWNER	A string value giving the name of the current owner using the OWNx field. If OWNx is not defined, this will be " $REQn$ " if the owner is <i>n</i> , or "None" if the arbiter is not owned.
VAL	A long value indicating the current owner, or -1 if it is not currently owned.
CLEAR	Writing a non-zero value will clear all requests and release the arbiter. This field is cleared after handling the request.

Example: Global PFTS arbiter record

record(arbiter,	<pre>\$(P):GLOBAL:ARB) {</pre>
field(OWN0,	"\$(P):OWNO NPP NMS")
field(OWN1,	"\$(P):OWN1 NPP NMS")
field(OWN2,	"\$(P):OWN2 NPP NMS")
field(OWN3,	"\$(P):OWN3 NPP NMS")
field(OWN4,	"\$(P):OWN4 NPP NMS")
field(OWN5,	"\$(P):OWN5 NPP NMS")
field(OWN6,	"\$(P):OWN6 NPP NMS")
field(OWN7,	"\$(P):OWN7 NPP NMS")
field(OWN8,	"\$(P):OWN8 NPP NMS")
field(OWN9,	"\$(P):OWN9 NPP NMS")


Example: Hutch interface PVs accessing global lock

Global action	lock.
ecord(longout, field(VAL, field(PINI,	
ecord(longout, field(OMSL, field(DOL,	<pre>X:ACTREQ to \$(P):GLOBAL:ARB.REQ0 \$(P):QRIX:ACTREQ_ASUB) { "closed_loop") "\$(P):QRIX:ACTREQ NMS NPP") "\$(P):GLOBAL:ARB.REQ0 NMS PP")</pre>

How do we do procedures in EPICS?

stepSequence Record

- What do we *want* in a procedure?
 - Start, Stop, Status
 - Clear, consistent interface
- "stepSequence" record: simple FSM interface
- stepSequence provides 5 main interface fields:
 - **REQ**: Set to 1 to ask the stepSequence to start.
 - **ABRT**: Set to 1 to ask the stepSequence to abort.
 - **STATE**: Indicates whether the stepSequence is DONE (0), RUNNING (1), or ABORTED (2).
 - **CLR:** Inlink. Set to 1 to move from ABORT to DONE
 - **STEPNAME**: Description of current step. Concatenation of step prefixes and step names.

We automate the use of the stepSequence record!

Database Preprocessor

- Provides a simple, consistent method for generating stepSequence records
- Preprocessor is applied to any .dbs files found during compilation
- Recognizes sequence { ... } macros
- Decodes simple macros into stepSequence records and supporting EPICS records
- "Normal" records are left untouched
- StepSequence records can be chained together, or used as steps within other stepSequences!

Example

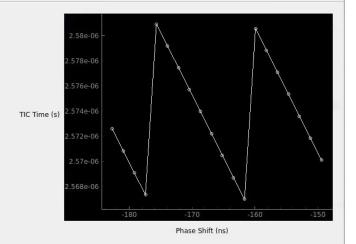
Automated optical reference distribution

PFTS Manager

- Provides arbitration of shared resources
- Makes heavy use of the stepSequence and Arbiter records
- Provides facility for requesting/releasing control of up to 3 PFTS stabilized links for TCBOCs
- Automatically performs signal routing via fiber matrix switch
- Performs stabilized link locking and unlocking as needed for fiber routing
- Displays current system status
- Provides both "user" and "expert" interfaces to subsystems

PFTS Ma	nager - PyD	M@las-console									-	
					FLS (Sou	irce) Sta	tus					
Name	Descrip	tion	Enable		Dicon Routi	ng	01	wner		Lo	ck Stat	us
FLS1	TCBOC OF	PCPA 1	\checkmark		5	5	CRIX	Release		Unlocked	Lock	Unloc
FLS2	MODS TCE	вос	v		17	17	CRIX	Release		Unlocked	Lock	Unloc
FLS3	АТМ ТСВС	С	✓		15	15	CRIX	Release		Unlocked	Lock	Unloc
FLS4	N/A				0	0	None	Release		Unlocked	Lock	Unloc
FLS5	N/A				0	0	None	Release		Unlocked	Lock	Unloc
FLS6	N/A				0	0	None	Release		Unlocked	Lock	Unloc
FLS7	N/A				0	0	None	Release		Unlocked	Lock	Unloc
FLS8	N/A				0	0	None	Release		Unlocked	Lock	Unloc
					Destinat	ion Stat	us					
Name	e Des	scription	Enable		Fiber	Na		Descript	ion	Enable	Fi	ber
LH:1	Bay	1 Optical Tab	le 🗸	5	Switch	ES3:MO	os	ES3 MOD	5		21	Switch
LH:2	Bay	2 Optical Tab	le 🗸	6	Switch	TMO:LM	P:ATM	TMO LAM	P ATM		23	Switch
LH:3	Bay	3 Optical Tab	le 🗸	3	Switch	TMO:LMI	P:MODS	TMO LAM	MODS		25	Switch
LH:4	Bay	4 Optical Tab	le 🗌	1	Switch	TMO:DR	M:ATM	TMO DRE	АМ АТМ		27	Switch
LL:1	Las	Lab Optical Ta	ible 🗌	9	Switch	TMO:DR	M:MODS	TMO DREA	AM MODS	: 🗌	29	Switch
QRIX:AT	M qRI)	к атм	~	11	Switch	TXI:HXR	АТМ	TXI HXR A	тм		31	Switch
QRIX:MC	DS qRI)	K MODS	V	13	Switch	TXI:SXR:	АТМ	TXI SXR A	тм		33	Switch
CRIX:AT	M Che	mRIX ATM	✓	15	Switch	TXI:MOD	s	TXI MODS			35	Switch
CRIX:MC	DS Che	mRIX MODS	V	17	Switch	XPP:ATM		XPP ATM			37	Switch
ES3:AT№	ES3	ATM		19	Switch	XPP:MOI)S	XPP MODS	6		39	Switch
utch Vie	w: QRIX	• E	dit Mode									
QRIX	ſ	DONE							Requ		ease All	
		Sou	rce		Destinatio		LS FL: ned Rout		Dicon Dest	FLS Owner		
Rout	el F	LS1 TCB	OC OPCPA 1	L	H:1	5			5	CRIX		
Rout	e2 F	LS2 MO	DS TCBOC	c	RIX:MODS	13			17	CRIX		
Rout	e3 F	LS3 ATM	ТСВОС	c	RIX:ATM	11			15	CRIX		
					Curr	ent Operati	on				Auto Ov	erlap
Route 1	Request	Release DO	NE								AOL	0.00000
Dauta 2	Request	Release DO									AOL	0.00000

15


Automated pump-probe delay control

📑 Form - PyDM@ctl-las-lhn-sp01			_	
File View History Tools				
< > 谷				
Back Forward Home				
aser Locker Manager - LAS:LHN:LLG2:01	Calibration Phase Shifter	TPR Controls	🖺 Bucket Jump	ck Control
PID Loop - Piezo Stabilization System State: Found	d 🖹 Expert Screen	HLA Control Enabled?	Enabled	
Setpoint Readback Error 0.000000000e+00 6.361278115e+00 -6.690878e+00	User Enable PID Active Error?		LILHN:LLG2:01:AUTO:RF_LOCK	Ъ.
0.0000000000000000000000000000000000000	* Enable	Target Time (ns) 2610.000000	2610.124794	
		Counter Time (ns)	2610.119000	Form - PyDM@ctl-las-lhn-sp
Override Automation?	Auto RF Lock?	RF Power	0.517075	File View History Tools
14		Diode Power	0.643178	
		DAC Output	6.690878	Back Forward Home
PID Loop - Frequency Lock System State: Idle	Expert Screen	Laser Phase Error (deg)	-0.021973	
Setpoint Readback Error	User Enable PID Active Error?	RF Bucket Error Correct Disabled	7319.000000	Configuration/Monitors
6.500000000e+07 6.499999999e+07 4.395202e-03	Disable	Calibration Status DONE	Calibrated	Calib. Status
•		C		Calibrated?

Laser Locker Manager

- Primarily EPICS record primitives
 - stepSequence for calibration
- Single "Target Time" delay control
- Automated system calibration, locking, and RF/laser bucket jump corrections
- **TODO: PFTS-style arbitration**

Calib. Status		DONE		
Calibrated?		Calibrated		
Calib. Control	Start Calib.	Stop Calib.		
Calib. Points	20.0	20.0		
Calib. Range (ns)	35.0	35.0		
alib. Step Size (ns)		1.8		
Calib. Setpoint (ns)		-149.4		
Calib. Step Counter		20.0		
Steps <= Counter?		0.0		
FIC Measurement		2.610121e-06		
Avg. TIC Measurement		2.610121e-06		
TIC Meas. for Calib.		2.570085e-06		
Phase Meas. for Calib.		-1.494422e+02		
FIC Reference Value		2.573959e-06		
hase Reference Value		-1.686922e+02		
Calib. Edge 1		-1.765672e+02		
Calib. Edge 2		-1.608172e+02		
Calib. Center		-1.686922e+02		

- 0

Acknowledgments

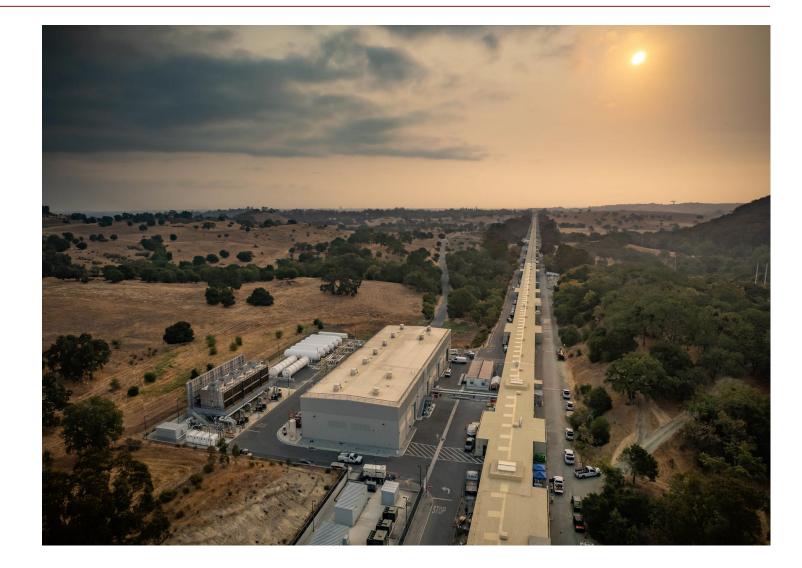
LCLS Control Systems

- Mike Browne
- Christina Pino

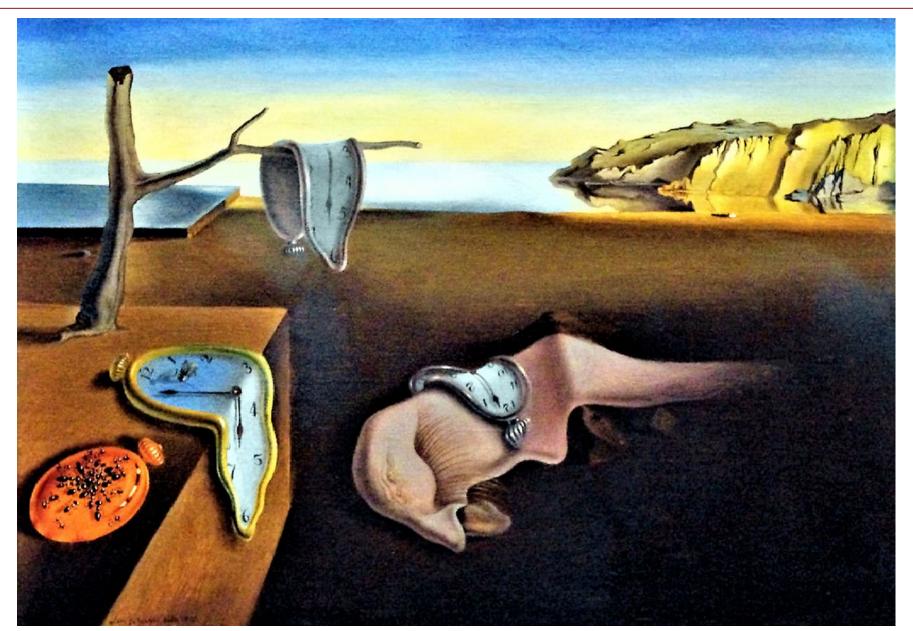
LCLS Timing Systems

- Stefan Droste
- Dring Xiang
- Charlie Xu

Acknowledgments


LCLS Control Systems

- Mike Browne
- Christina Pino


LCLS Timing Systems

- Stefan Droste
- Dring Xiang
- Charlie Xu

.... And all of you!

Questions?

