

State Machine Operation of Complex Systems

Pierrick Hanlet ICALEPCS 2023

2023 October 10

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. A Partnership of: US/DOE India/DAE Italy/INFN UK/UKRI-STFC France/CEA, CNRS/IN2P3 Poland/WUST

Content

- Introduction
 - Fermilab accelerator complex
 - PIP-II
- Motivation
 - Complex systems
 - Example
- State Machines
 - What this State Machine is NOT
 - Description
 - Algorithm
 - Implementation
 - Populating database tables
- Testing at PIP2IT
- Operation at PIP-II
- Other Targets
- Summary

Fermilab Accelerator Complex

Series of accelerators Provides beam to several experiments

- LBNF, DUNE
- NuMI
- muon campus
- local neutrino experiments
- test beams

PIP-II will replace the existing LINAC

PIP-II is the first US/DOE accelerator to be built with significant international contributions/partnerships.

PIP-II Mission

4/24

10/04/20

23

PIP-II is an essential upgrade to Fermilab accelerator complex to enable the world's most intense beam of neutrinos to LBNF/DUNE, and a broad physics research program for decades to come.

The PIP-II scope enables the accelerator complex to reach 1.2 MW p-beam on LBNF target

PIP-II Superconducting LINAC

→ For more on PIP-II see D. Nicklaus FR1BCO02

5/24 2023-10-10

PIP-II SRF Cavities^{1,2}

Name (Qty.)	HWR (8)	SSR1 (16)	SSR2 (35)	LB650 (36)	HB650 (24)	Units
Туре	Half-Wave	Single Spoke	Single Spoke	Elliptical	Elliptical	-
eta	0.11	0.22	0.47	0.61	0.92	-
Frequency	162.5	325	325	650	650	MHz
Design Q ₀	$0.5 imes 10^{10}$	$0.6 imes 10^{10}$	$0.8 imes 10^{10}$	1.5×10^{10}	2.0×10^{10}	-
Gradient	9.7	10	11.5	16.8	18.7	MV/m
N-doped	No	No	No	Mid-T bake	Yes	-

Prototypes validated

 \checkmark

PIP-II Cryomodule Development

Pierrick Hanlet, Fermilab

PIP-II will provide a highly capable, reliable, upgradeable and expandable scientific infrastructure with significant savings to DOE

Motivation: Complex Systems

In this context:

- A complex system can be any any field device or hardware to be controlled which has one or more sub-systems, and with many parameters, process variables (PVs)
- These systems have two typically more operational states
- For each state:
 - one, or more, sub-systems may be involved
 - different PVs of interest
 - different critical PVs
 - different alarm limits and severities for each PV
 - different archiving needs for each PV
- States may be static or dynamic
- Generally, the combinatorics are very large
- Operators cannot to reliably change all of these parameters for each system for each state

Motivation: Complex Systems

The consequences of ignoring operational states:

- the alarms limits may be set too loosely
 - do not notify operators and thus do not protect the operation
- the alarms limits may be set too tightly
 - alarms are continuous and ignored or disabled again affecting operation
- archived data
 - if scanned may miss events
 - if monitored and deadbands not adjusted will collect data inefficiently, or not at all
- a change in PVs, defined as critical to operation, may go unnoticed
- system experts may miss notifications

Motivation: Complex Systems (w/out RF)

HTC-1	HTC-2	HTC-3	HTC-4	HTC-5	HTC-6	Carister (041)	Cavities
			Heater Con	trol Loc	ip.		HTRVSL
	Power			Control	5.	27 K 4.29 K	
Pow	r 0.00 W		Set-00	Enable Dis	abled	101 70102	
Set Poi	t 0.00 K	0.00 K			5.0	38 K 4.29 K (201 TX202	
Set Valu	e 0.00 W	W 00.0			4	78 K 4.27 K	
Minimum Pow	r 0.00 W	0.00 W			-17	1301 TX302	
Maximum Pow	r 0.00 W	0.00 W			4	72 K 4.33 K	
				Status	10	C401 T.C402	
Curre	t 0.03 A		Heater	Status (0ff 4.1	17 K 4.29 K	
Voltag	e 0.031 \	/	PSU	Ready 0	Dn Al	17K A 29K	
Resistant	e 1.144 Oh	ms	Inte	nlocks (X D	1501 TX502	

NaN

11/24 2023-10-10

Pierrick Hanlet, Fermilab

Motivation: States of a Complex System – Example

Example: Superconducting RF (SRF) Cryomodule

- Offline
- Vacuum Pumping pumps, valves, gauges, interlocks (dynamic)
- Vacuum Pumped same (static)
- Cooling HTTS vacuum + valves, GHe flow, GHe pressure, temperatures, interlocks (dynamic – both vacuum and cryogenic)
- Cold HTTS same PVs (static)
- Cooling 4K vacuum + HTTS + additional valves, temperatures, LHe level, interlocks (dynamic – cavities, static for vacuum & HTTS)
- Cold 4K same PVs (static)
- Cooling 2K same + pump (dynamic)
- Cold 2K same (static)
- ... additional cryogenic states states
- Training RF same vacuum & cryo PVs (static) + HPRF, LLRF, RFPI (dynamic)
- Powered RF same vacuum, cryo, HPRF, LLRF, RFPI (static)
- Quenched ...
- Error ...
- Warming all (dynamic)

Motivation: Complex Systems – Example

Example: Superconducting RF (SRF) Cryomodule

In the previous example:

- "dynamic" refers to states in which it is expected that some value(s) change
 - expect large alarm ranges for these PVs
 - expect data to be archived periodically
- "static" refers to states in which PVs are not expected to change
 - tight alarm limits
 - expect data to be archived only when changing outside of deadband
- "static" states occur when previous state's dynamic PVs reach target
- when testing, one may stop at a static state, e.g. for the weekend

State Machine: What it is NOT

A state machine:

- is not intended to control the operation of a system
- in no way affects the operation of the system
- is not responsible for protecting equipment or personnel
- does not have user interactions

State Machine: What it IS

- A State Machine *is* a finite state machine
- It is a passive process that monitors the entire complex system and:
 - identifies its state by monitoring system PVs
 - identifies the pertinent PVs for each state
 - adjusts alarm limits and severities to be pertinent to the state
 - adjusts how data are archived depending on the state
 - identifies critical PVs for the state

State Machine: Algorithm

16/24 2023-10-10

Pierrick Hanlet, Fermilab

State Machine: Implementation

- The State Machine is implemented within the EPICS framework using the EPICS State Notation Language
- 3 Components:
 - state identifier a passive program which monitors status or values of PVs, this can be a standalone IOC or part of another controls IOC
 - 2 database relational database with identical tables (1 table for each state for each complex system)
 - a sequence IOC implemented in EPICS state notation language
 - monitors state changes
 - reads database table associated with new state
 - dynamically changes PV alarm limits and severities
 - dynamically changes Archiver functionality
 - starts a monitor of critical PVs
 - typically used to notify sub-system experts
- IOC fields to be set: LOLO, LOW, HIGH, HIHI, LLSV, LSV, HSV, HHSV, ADEL
- The Archiver mode for each PV to be set as Monitor or Scan

State Machine: Populating Database Tables

- populating the database tables requires the most effort
- sub-system experts begin with a template spreadsheet
- 1 sheet per state
- header corresponds to tables in database
- once populated, spreadsheets are loaded to database
- also helpful to ensure Archiver is correctly populated

	А	В	С	D	E	F	G	Н		J	K	L	М	N	0	Р	Q	R
1	pHB650	DV Name	Description	Measu	ired		AL	ARM		Units		ARCHIVE	R	AutoSMS	Tran	sition	Gro	up
2	CoolingHTTS	P V Nume	Description	Low	High	Lolo	Low	High	HIHI	Onits	mode	frequency (s)	deadband	20002002	description	value	Name	Force PV
3	Dynamic	PIP2IT:pHB650_VAC_PPG051:VacP	IV vacuum pressure – pirani gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00	Vacuum	+SSU-ALH-
4		PIP2IT:pHB650_VAC_PCC051:VacP	IV vacuum pressure – cold cathode gauge			1.0E-11	1.0E-10	1.0E-06	1.0E-05	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
5		PIP2IT:pHB650_VAC_PPG052:VacP	IV-turbo vacuum pressure – pirani gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
6		PIP2IT:pHB650_VAC_PCC052:VacP	IV-turbo vacuum pressure- cold cathode gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
7		PIP2IT:pHB650_VAC_PPG053:VacP	IV-scroll vacuum pressure – pirani gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
8		PIP2IT:pHB650_VAC_PPG101:VacP	BL vacuum pressure - pirani gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
9		PIP2IT:pHB650_VAC_PCC101:VacP	BL vacuum pressure - cold cathode gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
10		PIP2IT:pHB650_VAC_PII101:VacP	BL vacuum pressure – from ion pump			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
11		PIP2IT:pHB650_VAC_PPG103:VacP	BL-scroll vacuum pressure – pirani gauge			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
12		PIP2IT:pHB650_VAC_PCC171:VacP	IV vacuum pressure - cold cathode gauge at coupler 1			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
13		PIP2IT:pHB650_VAC_PCC271:VacP	IV vacuum pressure – cold cathode gauge at coupler 2			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
14		PIP2IT:pHB650_VAC_PCC371:VacP	IV vacuum pressure – cold cathode gauge at coupler 3			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
15		PIP2IT:pHB650_VAC_PCC471:VacP	IV vacuum pressure – cold cathode gauge at coupler 4			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
16		PIP2IT:pHB650_VAC_PCC571:VacP	IV vacuum pressure – cold cathode gauge at coupler 5			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
17		PIP2IT:pHB650_VAC_PCC671:VacP	IV vacuum pressure – cold cathode gauge at coupler 6			1.0E-14	1.0E-13	1.1E+03	1.1E+04	mbar	scan	300.0	0.00	0	N/A	0.00E+00		
18		PIP2IT:pHB650_VAC_PTI052:Current	IV turbo pump current			-2	-1	10	12	А	scan	1.0	0.00	0	N/A	0.00E+00		
19		PIP2IT:pHB650_VAC_PSI053:Current	IV scroll pump current			-2	-1	10	12	А	scan	1.0	0.00	0	N/A	0.00E+00		
20		PIP2IT:pHB650_VAC_PTTC052:Temp	IV turbo controller temperature			-2	-1	80	90	С	scan	1.0	0.00	0	N/A	0.00E+00		
21		PIP2IT:pHB650_VAC_PTTP052:Temp	IV turbo pump temperature			-2	-1	80	90	С	scan	1.0	0.00	0	N/A	0.00E+00		
22		PIP2IT:pHB650_VAC_PTF052:Freq	IV turbo pump frequency			-2	-1	70	80	Hz	scan	1.0	0.00	0	N/A	0.00E+00		
23		PIP2IT:pHB650_VAC_PTF102:Freq	BL turbo pump frequency			-2	-1	70	80	Hz	scan	1.0	0.00	0	N/A	0.00E+00		
24		PIP2IT:pHB650_VAC_PSI103:Current	BL scroll pump current			-2	-1	10	12	А	scan	1.0	0.00	0	N/A	0.00E+00		
25		PIP2IT:pHB650_VAC_PSI103:Current	BL scroll pump current			-2	-1	10	12	А	scan	1.0	0.00	0	N/A	0.00E+00		
26		PIP2IT:pHB650_VAC_VG101:ValveStatus	BL US gate valve status			-2	-1	5	6	-	scan	1.0	0.00	0	N/A	0.00E+00		
27		PIP2IT:pHB650_VAC_VG201:ValveStatus	BL DS gate valve status			-2	-1	5	6	-	scan	1.0	0.00	0	N/A	0.00E+00		
28		PIP2IT:pHB650_VAC_VT052:ValveStatus	IV turbo isolation valve display status			-2	-1	5	6	-	scan	1.0	0.00	0	N/A	0.00E+00		
29		PIP2IT:pHB650_VAC_VT053:ValveStatus	IV anti-suckback Open/Closed status			-2	-1	5	6	-	scan	1.0	0.00	0	N/A	0.00E+00		
30		PIP2IT:pHB650_VAC_VS053:ILK	IV anti-suckback interlock			-2	-1	5	6	-	scan	1.0	0.00	0	N/A	0.00E+00		
46																		
47		PIP2IT:pHB650_CRYQ_TX101:TempK	Cav1 Upper			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0	atures:Silic	+SSU-ALH
48		PIP2IT:pHB650_CRYO_TX102:TempK	Cav1 Lower			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
49		PIP2IT:pHB650_CRYO_TX103:TempK	Cav1-Cel1 Upper			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
50		PIP2IT:pHB650_CRYO_TX104:TempK	Cav1-Cel1 Lower			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
51		PIP2IT:pHB650_CRYO_TX105:TempK	Cav1-Cel3 Upper			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
52		PIP2IT:pHB650_CRYO_TX106:TempK	Cav1-Cel3 Mid			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
53		PIP2IT:pHB650_CRYO_TX107:TempK	Cav1-Cel3 Lower			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
54		PIP2IT:pHB650_CRYO_TX108:TempK	Cav1-Cel5 Upper			280.0	285.0	305.0	315.00	К	scan	1		0	N/A	0.0		
		-				-	-											1

State Machine: populating tables

- Can use history
- Group PVs, consider dynamic states, select range
- Static states compute mean and std
 - used to set alarm limits
 - used to set dead bands

19/24 2023-10-10

Pierrick Hanlet, Fermilab

ICALEPCS 2023

ΛΛΛ

Testing at PIP2IT

- PIP2IT is the PIP-II Integration Teststand
- first iteration included beam transport studies and 2 cryomodules (CMs)
- teststand to be used for CM testing prior to installation in the accelerator \rightarrow EPICS
- from date? To June 2023, much of the control infrastructure was established
 - IOCs
 - services HMIs, archiver, alarms, channel finder
- in addition to testings CMs, the teststand is being used to vet and make robust the EPICS tools and services
- State Machine operation of CMs will be introduced in phase-III testing, January 2024

State Machines at PIP-II

- PIP-II Main Page HMI³
- Status at a glance
- Launcher for all systems

ACCT			•								. /									_/					
DCCT																									
Laser Profile	0	0			0		0			0		0		0			0			6			0		
Wire Profile																									
Length Monitor											1								/						
Width Monitor											/							/							
BPM	0	0	0	0	0	0			0	•	0	0	0	0	0	0	•	9	•	•	0		0	0	(
Vertical Dipole											•	•	•	•	•	•	•/	•	0	•	0		•	•	
Horizontal Dipole											0	0	0	0	0	0	6	0	0	0	0		0	0	
Defocusing Quad											0	0	0	0	0	0	0	0	0	0	0		0	0	(
Focusing Quad										1	0	0	0	0	0	0	0	0	0	0	0		0	0	(
Skew Ouad										_					/										(
augu fanta																									
BL Vacuum	0	0	0	0	0	0) (0	0	0	0	D	0	0	0/	0	0	0	0	0	0		0	0	(
BL Vacuum	•	•	•	•	•	0)	•	•	•	•	0	•	•	•	0	•	0	•	•	0		•	•	
BL Vacuum	•	• Rauai	• Laure		•	•					• I milia) and a				•				•		whee	•	•	
BL Vacuum																					të t≌t	iy Avy	• •		, tree
BL Vacuum	HWR 55		1.2 551	P2-1	55R2-2	SSR2-3	SSR2-4	SSR2.5	SSF2.0	5592-7	LEESC-1	LE650-2	LBEED-3	LB650-4	LEGSO S	LBELO-6	LB650-7	LE650.8	LB6£0-9	HBESCI	tin ₽.	HB650-2	C Ugodat Hess		HE650-4
BL Vacuum	HWR SS 2KCC/d 2H	RL1 SSR	112 551 112 22	P2-1 2	SSR2-2 PKCc'4	SSR2-3 PKCC'd	SSR2.4	SSR2.5	SSR24	SSP2-7 JKCc'd	LESSO-1	LEG50-2 ZKG2'6	LBEED-3	LB650-4 JKCe'd	LEGO'S	LBEED-6 SKGC(d	LB65C-7 2XCC 10	LE650.8	LBEED-9 2KGC/d	HBESC 2	∎ See≣e	HB650-2 SKGc10	HESS:		HB650-4
BL Vacuum	HWR 55	R1-1 SSF	11.2 SSI Ce'd 2K		SSR2-2	SSR2-3 7KCC'S	SSR2.4	SSR2.5 JRCC'0	SSR24	SSR2-7 JKCc*d	LEESO-1 2XCC'L	LE650-2 JKCC'S	LBEED-3	LB65C-4	LE650.5 JXC2 ¹ X	LBELO-6	LB650-7	LE650.8 2KCc'd	LB610-9 JKCeral	HBESCA AXCC:11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HB65C-2 CCC-9	HESSO		HESSO-4
BL Vacuum BL Vacuum Front End State Vacuum Cryogenics Safety	MWR SS SKCcld SM	RI-1 SSR	11.2 SSI			SSF2-3 7RC2/0	SSR2.4 2XCCrd	SSR2.5 2KCC'S	SSR24	SSP2.7	LESSCA RECEVENT							LE50-8 3KCc14		PREECO RECOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HESSE HESSE		HESSO 4
BL Vacuum BL Vacuum Front End State Vacuum Cryogenics Safety DEPI	HWR ES	R1-1 SSF (22-1) 7K	aliz SSI		SSR2-2	SSR2-3 JRCC'd	55R2.4 25KCC:d	SSP2.5	SSR24	SSP2.7				LESSC4 JXC2'd	LESSOS	LBELO-6	LESSO-7						Contraction of the second seco	•	PESS 4
BL Vacuum BL Vacuum Uront End State Vacuum Cryogenics Safety RFPI MPS	HWR 55	R1-1 55F		R21	SSR22	SSR2.3 JRCC'dl	SSR2.4 2%CC/d	SSR2.5	SS52.4	SER27					LESSS 2KCcki	LEELO 6 SKCc(I)	LE650-7					HBSSC2		•	
BL Vacuum BL Vacuum State Vacuum Cryogenics Safety RFPI MPS Manets						55523 JRCc10	SSR2 4 SKR2 4 SKR2 (d)	SSR2.5 2KCC (I		SER27						LEELO C		LESSS &			- - - - - - - - - - - - - - - - - - -	HBEECZ SKCEV O O O O O	• • • • • • • • • • • • • • • • • • •		
BL Vacuum BL Vacuum State Vacuum Cryogenics Safety RFPI MPS Magnets LIRF		Rui SSR				25823 27824 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SSR24	SSR2.5 3000 V 0 0 0 0 0		SSR27											• • • •		• • • • • • • • • • • • • • • • •		RESCA CONTRACTOR

Other Targets

Other complex systems for which State Machines may be considered:

- Warm Front End
- Cryogenics Plant
- Beamline accelerator components
- Beamline instrumentation
- Accelerator controls modernization (ACORN)
- States from State Machines can be used to simplify complex sequences

For more on ACORN see D. Finstrom – TUMBCMO20

References

References

- 1. ``The PIP-II Reference Design Report", V. Lebedev et al., FERMILAB-DESIGN-2015-01, United States: N. p., 2015. Web. Doi:10.2172/1365571.
- 2. ``Fermilab Proton Accelerator Complex Status and Improvement Plans, V. Shiltsev, FERMILAB-PUB-017-129-APC.
- 3. ``PIP-II Parameters Physics Requirement Document (PDR), darft.

Summary

- The PIP-II scope enables the accelerator complex to reach 1.2 MW p-beam on LBNF target
- A State Machine will be used for all PIP-II complex systems
- A complex system is one with one, or more, subsystems and two, or more states such that the combinatorics lead to 10-10⁵ PVs with which to reckon
- A State Machine is a finite state machine which monitors the system and serves to make alarms and archiving relevant and robust in all phases of operation
- Does the State Machine need a new name?

Questions?

