

EUROPEAN SPALLATION SOURCE

A.Nordt on behalf ofM. Carroll, D. Cosco, E. D'Costa, S. Gabourin, J. Gustafsson, J. Järhög, G. Ljungquist,X. Mananga, S. Pavinato, R. Silveira, A. Petrushenko, C. Webber, M. Zmuda

Short Introduction To ESS Machine Protection

MP-SoS Organisation and Responsibilities

MP Team is responsible to:

- 1. Coordinate MP across ESS
- 2. Define (global) protection functions
- 3. Develop, operate, and maintain Beam Interlock System (BIS)
- 4. Ensure working interfaces with BIS
- 5. Foster awareness that things can break
- 6. Foster awareness that thorough testing leads to success

System Owners are responsible to:

- 1. Develop reliable systems
- 2. Implement local protection functions
- 3. Implement MP requirements in their system
- 4. Provide sensors needed for global protection functions

Global Protection Functions - Example MP Analysis and Protection Functions to avoid Beam Induced Damage

Machine Protection Analysis Example

Protection Function example

PF ID	VAC-PF-1.1 - VAC-PF-1.108					
PF Type	Global					
Description	Prevent / Stop beam operation if <i>Valve</i> position switch "Valve Open" is not actuated and device is upstream of beam destination					
Linked OPF	VAC-OPF-1	Linked Hazard	VAC-HAZ-1			
Sensor / Input	Valve position switch "Valve Open"					
Logic	MPSVac FBIS					
Actuator	Beam stop actuator systems					
PIL Requirement	PIL 1	Timing Requirement	225 ms			
Comments	Valve = Valve refers to any instance of the 108 valves. The last number of the PF refers to a specific valve. Section 3.5 contains the full list of valves applicable for the protection function.					

Protection Integrity Level (PIL) Definitions

PIL	PFH (10 ^{-x} h ⁻¹)	PFD (10"*)	MTBO (kh)	SFF	HFT
0	4 - 5	1	10-100	< 60%	0
1	5-6	1 – 2	100-1000	60 - 90%	0
				< 60%	1
2	6 - 7	2 - 3	10 ³ -10 ⁴	90 - 99%	0
				60 - 90%	1
				< 60%	2
3	7 – 8	3-4	10 ⁴ -10 ⁵	>99%	0
				90 - 99%	1
				60 - 90%	2
4	8 - 9	4 - 5	10 ⁵ -10 ⁶	>99%	1
				90 - 99%	2

ESS MP-SoS Distributed View Layout and scope of Machine Protection Systems of Systems (MP-SoS)

Beam Interlock System: PLC based Systems

MPSVac: Machine Protection System for VacuumMPSID: Machine Protection System for Insertable DevicesMPSMag: Machine Protection System for MagnetsMPSTrg: Machine Protection System for Target

PLC based interlock systems:

- 1 fail safe CPU and multiple, distributed I/Os

- I/Os connect to sensor systems (VSG, FC, EMU, WS, Quads,...)

Fast Beam Interlock System

- SCU (Signal Conversion Unit) concentrating signals from Sensor Systems and MPS PLC based systems
- **DLN** (Decision Logic Node) concentrating signals from several SCUs, deriving global beam permit and triggering **Actuators** to stop Beam

Fast Beam Interlock System – Layout Layout and scope of the Fast Beam Interlock System (FBIS)

ess

Verification Strategy of ESS Machine Protection

BIS System Verification Overview Flow Followed for Systems Developed by MP Team

MP-SoS Verification Overview Flow Followed for MP-SoS Interfacing Systems Verification

- Interfacing System verification by system owners.
 Specifications and reports are reviewed by MP team against MP requirements.
- 2. Interfaces are verified between systems.
- 3. BIS systems are verified (SIT).
- 4. Subset of Protection Functions are tested in Final Integration Test for full chain verification.

Lessons Learned

What Has Happened So Far?

Before executing the MP-SoS SIT, a Test Readiness Review is performed.

By the time of the MP-SoS Test Readiness Review all local MP testing shall be done, test reports shall be released and all systems should be ready for integrated testing (SIT).

3 beam commissioning phases have been conducted – beam to MEBT FC, DTL1 FC, DTL4 FC.

Readiness of sensor, actuator systems and BIS at the time of MP-SoS Test Readiness review:

Phase 1: 97% Phase 2: 80% Phase 3: 20%

Dealing with many stakeholders: behavioral and psychological factors

Don't aim too high / ensure scope is clearly understood

– People can tend to become defensive and underestimate the remaining scope.

- If you ask if a system can be / or is "ready", then inevitably the answer will be "yes".

→ Assess and manage the achievable scope – focus on critical functionality. Defer or update 'nice-to-haves'.

Example from TRR:

Q: "are you ready"?

A: "yes!"

Q: "nice, can we see the test report?"

A: "aja, ... we are still working on the documentation – but we will be ready on time, trust us"

Dealing with many stakeholders: behavioral and psychological factors

Be transparent about issues and challenges

- Don't assume that declaring readiness is just a formality / ticking off an artificial milestone.
- Don't let others push you to declaring readiness just to make your managers look good.
- \rightarrow Admitting to issues is not a weakness, it is a strength and it will lead to real success.

Example: at ESS for the MP-SoS TRR #3, only 20% were ready, but we still passed the review.

Consequently, beam commissioning was bumpy with many trials to get things fixed during beam time – things that should have been fixed and tested long before.

Dealing with many stakeholders: behavioral and psychological factors

Don't underestimate the importance of thorough verification

- Separating functions that go across many systems into bits and pieces and testing these one by one first in the lab / in development environment, before testing full functions on site, saves a lot of time when it comes to integrated testing and related fault finding.

→ Following basic systems engineering approach from the beginning is very beneficial and saves time in the long run (have requirements, design documents, test specifications, etc in place).

 \rightarrow Well written and unambigious test documentation will save a lot of time, though it takes time to develop it.

Dealing with many stakeholders: behavioral and psychological factors

Know your stakeholders

- Try to understand how they see the world.
- What are the issues in their teams?
- What is the mind set of their management?

- \rightarrow Don't sit in an ivory tower.
- → Go for regular inspections on site, in the lab meet and talk to the people in the field, rely less on written status reports or meetings.
- \rightarrow Break down the silos.

The End