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Abstract

High repetition-rate, ultrafast laser systems play a critical role in a host of modern scientific and 
industrial applications. We present a diagnostic and correction scheme for controlling and 
determining laser focal position by utilizing fast wavefront sensor measurements from multiple 
positions to train a focal position predictor. This predictor and additional control algorithms have 
been integrated into a unified control interface and FPGA-based controller on beamlines at the Bella 
facility at LBNL. An optics section is adjusted online to provide the desired correction to the focal 
position on millisecond timescales by determining corrections for an actuator in a telescope section 
along the beamline. Our initial proof-of-principle demonstrations leveraged pre-compiled data and 
pre-trained networks operating ex-situ from the laser system. A framework for generating a low-level 
hardware description of ML-based correction algorithms on FPGA hardware was coupled directly to 
the beamline using the AMD Xilinx Vitis AI toolchain in conjunction with deployment scripts. Lastly, 
we consider the use of remote computing resources, such as the Sirepo scientific framework*, to 
actively update these correction schemes and deploy models to a production environment. Keywords: 
laser, machine learning, correction, focal position.

Laser Focal Position Correction Using FPGA-Based ML Models
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Motivation: High Average Power Lasers for Future Accelerators

High intensity lasers are a critical technology for 
present-day and future accelerators

• Electron and proton beam-sources leverage these 
lasers for ionization, capture, and acceleration

• Laser plasma accelerators (LPAs) may generate 
GeV-scale electron beams from cm-scale 
accelerators

• Laser-driven ion acceleration schemes rely on 
careful control of intensity profile and 
laser/target alignment

• Future applications will require large increases in 
repetition rate and corresponding stability!

Laser Focal Position Correction Using FPGA-Based ML Models

Nature, 530, 190-193 (2016)

Laser focal position is a critical figure of merit for 
accelerator applications

• Plasma accelerators are increasingly sensitive to focal 
position for both injection and acceleration

• Wavefronts must be matched to plasma for 
guiding, and focused at the point of injection 

• Focal position may vary due to myriad coupled 
environmental factors along the beamline

• Vibrations, temperature fluctuations, 
misalignments

• Many fluctuations occur at >1 Hz, and require 
rapid identification and correction
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• Objective: Utilize a fast non-perturbative wavefront sensor to predict focal position with high 
accuracy. A motorized beam expander will permit rapid corrections to the focus.

A fast and simple scheme for laser focal position correction

1. Perturbative wavefront sensor (HASO WFS)
2. Non-perturbative wavefront sensor (Thorlabs WFS)
3. Adjustment Position (Beam Expander)

We want to apply corrections using only 
the in-line wavefront sensor

Laser Focal Position Correction Using FPGA-Based ML Models

F. Isono et al. (2021). High Power Laser Science and Engineering,
9, E25. doi:10.1017/hpl.2021.12



6/25

Focal Position Variation is a concern for optimizing interactions

• Systems exhibit significant shot-to-shot fluctuations in focal position, as evidenced by high-quality 
laser wavefront measurements taken at the beamline

• In any real experiment, there is a tension between what one has and what one wants
• 1 Hz high-power pulse  <->  1 kHz seed pulse  <->  <10 Hz corrector response
• Camera Resolution  <->  Driver-calculated Figures  <->  Model Resolution

Laser Focal Position Correction Using FPGA-Based ML Models
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Linear stage response

Focal position sensitivity to 
lens movement

• A transmissive, telescopic beam expander enables flexible focal 
position adjustment

• Modifications can be made throughout amplification chain prior to 
compression and final focus.

• Linear stage is under consideration for fast lens movements
• We chose a Zaber X-LDA025A-AE53D12 for prototype testing due to its 

availability and features

• This brings up operational concerns though – no “park” and need to 
transparently bridge stage for remote control

• Built-in PID controller and serial communication baud rate limits control 
bandwidth

Beam Telescope and Motion Stage

Laser Focal Position Correction Using FPGA-Based ML Models
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Systematic Measurement Effects

Laser Focal Position Correction Using FPGA-Based ML Models

Thorlabs WFS20 image resolution setting vs calculated Radius of Curvature
Left: Calculated ROC in time domain, Right: FFT of calculated ROC
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Speed and fidelity tradeoffs motivate processing pipeline

Thorlabs WFS20-7AR Wavefront Sensor

● Positioned at end of beamline
● 110μm pixel pitch
● 100Hz Read Frequency
● Used as ground truth for sample data
● Provides tools for generating fits to 

wavefront data

● Non-perturbative, parasitic
measurement upstream of 
laser focus

● 150μm lenslet pitch
● Provides tools for generating

fits to wavefront data
● Up to 1 kHz Read Frequency

HASO4 Wavefront Sensor

Dataset includes 30k shots across separate runs

Laser Focal Position Correction Using FPGA-Based ML Models
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• Processing: Develop an algorithm that can identify and correct for variations in laser focal position 
using fast, online measurements

• Generate a representative dataset of wavefront images

• Train an ML-based model to correlate non-perturbative (e.g. online) measurements with perturbative (e.g. offline) 
ones and inform correction

• Consider controls schemes for predicting correction (e.g. PID, feed forward, model predictive)

• What figure of merit? e.g., Zernike coefficients, radius of curvature

• Deployment: Demonstrate the feasibility of deploying such algorithms on FPGA/accelerator 
systems in conjunction with corrective optics

• Identify and address relevant data pipeline considerations

• Determine toolchain for flexible deployment of corrective model

• Consider optical configuration and actuator needs

Two classes of challenges for implementing this scheme

Laser Focal Position Correction Using FPGA-Based ML Models
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• Initial strategy leverages investigated both CNN and fully-connected feed-forward networks
• Networks feature 2-4 hidden layers of varying size, ReLU activation, robust scaler on inputs/outputs
• Since focal point errors may not be correlated between cameras, FFNN may be better at learning relationships
• FFNN should be easier to augment with additional input, with meaning, without highly custom architectures

• Balance between data cleaning, augmentation, and network size 
• Raw correlation between radius of curvature from Zernike fits alone is poor (0.45 - left)
• Using only pixel data (144-pixel vector) requires largest network size to enhance correlation (0.82)
• Augmenting pixel data with Zernike fits achieves higher correlation (0.87) with fewer hidden layers (right)

• Thorlabs camera firmware provides native Zernicke fits to 5th order (16 terms)

Neural Networks and Data Correlation

Laser Focal Position Correction Using FPGA-Based ML Models
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• System-level control requires coordination between many components
• Wavefront sensors, data analysis and model prediction, telescopic lens adjustments, and broader controls system

• System should have flexibility to incorporate external data sources independent of the wavefront sensor

• Environmental inputs may include auxiliary measurements (temperature, humidity, etc.) 

• Controls system feedback may be required to account for global operational needs (machine protection, interlocks, etc.)

• Processing pipeline requires data processing and communication across systems
• Multiple inputs and outputs requiring multiple levels of processing

• Our strategy is to employ a fast, embedded device to enact processing and control algorithms

Data pipeline and controls integration are required

Laser Focal Position Correction Using FPGA-Based ML Models

External Data 
Sources

Embedded Device Processing

Data pre-
processing

Post-
processing PID/Control

Stage 
Adjustment

Model 
Execution

Diagnostic Inputs Diagnostic Outputs

Controls 
Feedback

Wavefront 
Sensors



13/25

• Simulated PID controller provides an 
initial correction estimate

• Existing data sampled and interpolated

• Correction scales with update rate
• 1 Hz sampling is sufficient to remove 

slow excursions

• 25 Hz correction reduces maximum 
deviation to ~0.25 mm and one sigma 
deviation to 0.031 mm

Estimating Online Performance

Laser Focal Position Correction Using FPGA-Based ML Models
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Data Transport Example

(dev) C:\Users\jeins\source\repos\khzwave\src\khzwave>python server.py
INFO:producer:Producing data...
…
INFO:main:+1 subscriber (1/1)
INFO:main:Awaiting data...
INFO:producer:Producing data...
INFO:main:Send took 0 ns
INFO:main:Awaiting data...
INFO:producer:Producing data...
INFO:main:Send took 0 ns
INFO:main:Awaiting data...
INFO:producer:Producing data...
INFO:main:Send took 0 ns
INFO:main:Awaiting data...
INFO:producer:Producing data...
INFO:main:Send took 0 ns
INFO:main:Awaiting data...
INFO:producer:Producing data...
INFO:main:Send took 0 ns
INFO:main:Awaiting data...

(image) xilinx-zcu104-2021_1:~/khzwave_python/src/khzwave$ python 
receiver.py -d roentgen
Connecting to host: roentgen
INFO:main:[[129  28 169  69  25 255 226 251  27  56   8]
[ 87 114 177 211  22  65  43  75 164  14 142]
[236 139 230  23   9 180   9  76  31 139 199]
[252 229   7 215  59   4  81  71  43  32 224]
[241   1 176 228 123  51  29  34  47 174  57]
[121 138 199 103 110 116 162 175 211 154  18]
[215  48  80  30  52 191  50 113  35 229  82]
[ 46 210 210  83  51 168 252  13 188  31 109]
[ 98  59 215 159 194 167  44  32 181 249 237]
[ 17 101 233  60 130  90 219 155 238 120 174]
[ 80  85  30 138 176 121 237  69 154 198 125]]

NOTE: This does not really take 0 ns, it is just that the system time reporting granularity is too large 
to measure. For example some systems have 100 us or 1 ms operating system ticks

Laser Focal Position Correction Using FPGA-Based ML Models
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• FPGAs enable lightweight performant embedded systems for real time controls
• Reprogrammable logic permits streamlined updates and operational feedback

• Performance necessitates use hardware description language (HDL)
• High Level Synthesis (HLS) provides a means for consistently transferring operations designed using high level 

languages (C++, Python) into low-level representations required by hardware

• Deployment Process involves multiple steps:
1. Algorithm Design – Parametrize and train neural network

2. Optimize and Quantize – Reduce size of network features (pruning) or precision of operations (quantization) to 
enhance performance

3. Compile – Build HDL representation of network for device execution

4. Deploy – Configure device runtime to load and execute network in response to inputs and job requests

• Choice of device architecture, manufacturer, and firmware constrains development environment
• Manufacturers impose toolchain requirements which limit high level framework choice

• E.g. Choice of OS (Windows, Linux), API (Python, C), and Architecture (ARM, X86)

• Ongoing efforts to integrate disparate platforms and architectures – see ONNX (https://onnxruntime.ai/)

Deploying corrections via FPGA systems

Laser Focal Position Correction Using FPGA-Based ML Models

https://onnxruntime.ai/
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Xilinx Vitis AI DPU Workflow

• Develop and save model

• Build python script to run in Vitis AI docker container to quantize model and save the model
• This script should also check performance for a production deployment as performance IS lost in the quantization process
• Quantization is necessary to run a model using integer types instead of float types, due to accelerator data format requirements

• Compile the model in to the Xilinx DPU .xmodel format• The Xilinx DPU pipeline involves several steps, including the use of the Vitis AI docker container (docker.io/xilinx/vitis-ai or built manually)• Highly version dependent as to if the saved model can run through the pipeline properly• Model format fights: onnx, tf, tf2, torch, tvm

• A series of scripts had to be developed or modified to handle the build environments and tooling that we are using 
(TANSTAAFL)

• Deploy the xmodel, run script, and dataset to the device• Run the performance test

Stage 1

ffnn.py → docker_run.sh → runme.sh → runme_tf2.py → compile_for_zcu104.sh

Stage 2

deploy.sh → radiasoft.py

Laser Focal Position Correction Using FPGA-Based ML Models
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Xilinx Vitis AI DPU Trace

Laser Focal Position Correction Using FPGA-Based ML Models
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• Prototype implementation shows consistent performance at 5k SPS
• Room to expand network size or couple multiple interactions while still achieving kHz operation

Performance estimates are encouraging for high repetition rates

Laser Focal Position Correction Using FPGA-Based ML Models
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Physical Deployment

• Several reasons exist to develop a solution that 
is packaged and looks good
• Shifting timelines and schedule make it a challenge 

to source components when collaborating

• Schedule and resources
• Custom machining vs kit-bashing something that fits

• Component selection is not straightforward when 
working with evaluation kits

Laser Focal Position Correction Using FPGA-Based ML Models
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Sirepo Activait

We train neural networks on simulation or measurement
 data to create a surrogate model of beamlines.

We have automated SRW simulations to create input
 to be read into Activait for training data, for example.

https://www.sirepo.com/activait

Laser Focal Position Correction Using FPGA-Based ML Models
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• We are developing a scheme for correcting laser focal position at high repetition rate
• Our approach integrates fast, non-perturbative measurements with machine learning models to predict the focal position 

and determine a correction.

• We aim to develop an in-hardware solution for flexibly deploying and updating the correction model

• We have trained a model to quickly correlate upstream and downstream diagnostics
• Feed-forward neural network, augmented by fits, can significantly increase correlation between sensors

• Identified trade-offs between sample data size, pre-processing, input space, network size, and correlation quality

• We are continuing to evaluate different models to address different use-cases and deployment strategies

• PID-based controller, alone, promises significant improvements at > 1 Hz repetition rates

• We have identified a deployment strategy leveraging a Xilinx DPU co-accelerator
• Programmable device with large FPGA fabric for expansion and/or parallelization

• Deployment pipeline leverages PyTorch + digitization and export via Xilinx development platform (Vitis AI)
• Future efforts will explore the use of ONNX runtime for packaging the entire deployment process

• Initial testing illustrates execution speeds of 5K SPS

• Experimental demonstration is scheduled shortly
• We have tested each component of the pipeline independently and on the testbench

Conclusions

Laser Focal Position Correction Using FPGA-Based ML Models
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Thank you for your attention!

Laser Focal Position Correction Using FPGA-Based ML Models
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights.  Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof.  The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof.

Sirepo development has been supported by the U.S. Department of Energy Office of Science under multiple awards:

• by the Office of High Energy Physics under Award Nos. DE-SC0011340, DE-SC0015897 and DE-SC0018719;

• by the Office of Basic Energy Sciences under Award Nos. DE-SC0011237, DE-SC0015209, DE-SC0018556,

DE-SC0020593 and DE-SC0018571;

• by the office of Nuclear Physics under Award Nos. DE-SC0015212 and DE-SC0017181;

• by the Office of Advanced Scientific Computing Research under Award Nos. DE-SC0017162, DE-SC0021553,

DE-SC0019682, DE-SC0022386 and DE-SC0017057.
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