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S350

* Existing and potential solutions:

EDM

» 0Old technology
becoming difficult to
deploy

CS-Studio

(Eclipse based)

» Deprecated

» Heavyweight

» Complex build system

Motivation

Phoebus ]

» Existing solution

Welb U]

» Truly cross-platform

» No installation

> Best experience for
remote usage
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* Existing and potential solutions:

EDM

» 0Old technology
becoming difficult to
deploy

CS-Studio

(Eclipse based)

» Deprecated

» Heavyweight

» Complex build system

Motivation

Phoebus ]

» Existing solution

Web UI "4

» Truly cross-platform

» No installation

> Best experience for
remote usage




Prototype Web U
* Introducing cs-web-proto created in

Backend - Frontend

I Open screer
WebSocket Welcome!

| = . This is the home page for the prototype web application
y ‘ s ] \ under development at Diamond Light Source.
Data Se rver To take a look around, open the menu with the button
at the top left corner of the page.

E‘E‘Iﬁ e python @ Gra;thI—

1S cs-web-proto how outling
X

Browser

Ul framework: @ React

Data management: (@) Redux
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* Introducing Coniql &
— Python application originally developed by Tom Co

— Uses EPICS Python libraries to access PV data = aioca
* Built on top of asyncio

S350

Back-end Server

* API calls: caget, caput, camonitor, cainfo

— GraphQL Python library to serve data to the web Ul via
WebSockets = Strawberry GraphQL

# python
%?'Conkﬂ
:
E....IPIC.S.< >i aioca iStrawberry ‘<—>@ GraphQL
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@ GraphQL

* Open source query language & runtime en
originally developed by Facebook

* Client-server model
[ ] Request data
<€
>
Reply with data
* Supports:

— Query -> get read-only data

— Mutation -> modify data
— Subscription -> receive event-based updates

* Performance and flexibility focused



Strawberry \

v' Supports code-first schema: . ..

— Types Code |

— Resolver functions " Schema |

(}ent _Schema | _ Client |

4 Supports both new (graphql—transport—ws) and
deprecated (graphqgl-ws) WebSocket protocols

v Open source — GitHub

v" In development phase, Timeline
actively maintained e

B 5 issues
+0 this week (817 total)

O 12 pull requests
Thu Fri Sat Sun Mon Tue Wed +4 this week (2.2k total)
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Client makes this request through a WebSocket

Simple Subscription E

1v subscription {
subscribeChannel(id: "

id

time {

ca://temperature:water"

datetime

value {
string
float

11w display f{
12 units
controlRange {
max
min

"data": f
"subscribeChannel":
"id": "ca://temperature:water”,
"time":

"datetime": "2023-09-20T14:21:17.939171"
"value":

"string": "50.50",

"float": 50.5

'

"display":
"units": "C",
"controlRange":

"max": 100,

"min": 0




Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak
» No support for new WebSocket
protocol
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Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak

» No support for new WebSocket

protocol

» WMemory leal in Strawberry for the
new WebSocket protocol Proposed solution, discussed, fixed and

» Performance issues (CPU usage) with  new release — all within days

the new WebSocket protocol



Issues Using GraphQL Li

Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak

» No support for new WebSocket

protocol

» WMemory leal in Strawberry for the
new WebSocket protocol Proposed solution, discussed, fixed and

» Performance issues (CPU usage) with  new release — all within days

the new WebSocket protocol

Compatibility issues with new releases Pin Strawberry version in installation
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 Demands on Conigl are high! ST
— 1000s of PVs [, cIienL)‘-/'A‘ client

— Rate up to 10 Hz wclient ) (SR

Y
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client
) -

— 100s of clients o Jiant |
S~ client

* Needs to support:
— machine status displays
— operator screens across multiple beamlines

— remote access to these screens
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#) python

WebSocket
client

Performance

ERICSIOC

CPU/memory
monitor

Configurations: Measurements:

- Number of PVs to subscribe to - CPU usage

- Update frequency (10 Hz) - Memory usage

- Number of incremental updates - Number of dropped updates per
to collect subscription

- Number of clients
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* Run tests on Kubernetes (reproducible)

NFRTTEY

Performance Test R

* Test parameters: PVs updating at 10 Hz, collecting 36,000 s



Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU  Average h Slightly disappointln
clients PVs number of

dropped

results

20.52%
53.32%

74.55%
100.00% 3,811
100.00% 101,829
73.70% 0
75.47% 0




Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU  Average h Slightly disappointin
clients PVs number of
dropped

results
1 10 PAVRSYA 0]
1 50 53.32% 0

100 74.55% 0 100 PVs = OK
100.00% 3,811

100.00% 101,829
73.70% 0
75.47% 0




Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU  Average - Slightly disappointin
clients PVs number of
dropped

results
1 10 PAVRSYA 0]
1 50 53.32% 0

100 74.55% 0 100 PVs = OK

100.00% 3,811 At 100% CPU, updates

are dropped

100.00% 101,829
73.70% 0
75.47% 0




s Performance Improve

e Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for
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Performance Improve

* Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for

\,

Number of Number of Average CPU  Average Average CPU  Average

clients PVs number of number of
dropped dropped
results results

1 10 20.52% 0) 13.69% 0

1 50 53.32% 0) 34.53% 0

1 100 74.55% 0) 57.91% 0]

1 200 100.00% 3,811 92.60% 16

1 o10]0) 100.00% 101,829 100.00% 66,929

2 50 73.70% 0) 51.88% 0

10 10 75.47% 0) 51.73% 0

After performance improvements
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Performance Improve

* Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for m¢

\

Number of Number of Average CPU  Average Average CPU  Average
clients PVs number of number of
dropped dropped
results results
10 20.52% 0) 13.69% 0

53.32% 0 34.53% 0
74.55% 0 57.91% 0
100.00% 3,811 92.60% 16
100.00% 101,829 100.00% 66,929
73.70% 0 51.88% 0
75.47% 0 51.73% 0

After performance improvements
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 Mitigate the performance issue using

N

ERLE

Kubernetes Deploy

Kubernetes:

— Deploy 8 replicas -> client connections

are load balanced

Client

| Client

Client

* Currently this can comfortably support ~ 50 machine status displays

Last Fill | Top-up Status

Current (mA)

300

Fill Pattern Flback Status
-12

=]
(=]

Lifetime (h)

1 1 1 |
N B -} ©

20 Sep 2023 14:44:33
Current
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* Currently need many Kubernetes replicas...
... large amount of resources

S350

Future Plans

* |nvestigate schema changes to increase throughput
in low level code (further improve performance?)

* Consider alternatives to GraphQL...
... PV WebSocket (pvws) ?



