
Lessons	From	Using	Python	GraphQL	
Libraries	to	Develop	an	EPICS	PV	

Server	for	Web	UIs	

Rebecca	Auger-Williams,	Observatory	Sciences	Ltd,	St	Ives,	UK	
Abigail	Alexander,	Tom	Cobb,	MarLn	Gaughran,	Austen	Rose,	Alexander	Wells,	

Andrew	Wilson,	
Diamond	Light	Source,	Harwell,	UK	

	



MoLvaLon	

•  Diamond	II	upgrade	prompted	UI	review	



MoLvaLon	

•  ExisLng	and	potenLal	soluLons:	

Ø Old	technology	
becoming	difficult	to	
deploy	

(Eclipse	based)	
Ø  Deprecated	
Ø  Heavyweight	
Ø  Complex	build	system	

Ø  ExisLng	soluLon	

Ø  Truly	cross-plaSorm	
Ø No	installaLon	
Ø  Best	experience	for	

remote	usage	



MoLvaLon	

•  ExisLng	and	potenLal	soluLons:	

Ø Old	technology	
becoming	difficult	to	
deploy	

(Eclipse	based)	
Ø  Deprecated	
Ø  Heavyweight	
Ø  Complex	build	system	

Ø  ExisLng	soluLon	

Ø  Truly	cross-plaSorm	
Ø No	installaLon	
Ø  Best	experience	for	

remote	usage	

✔	



•  Introducing	cs-web-proto	created	in	2021	

Prototype	Web	UI	

UI	framework:		
	
Data	management:	

Server	Data	 Protocol	

Front	end	Back	end	

Browser	

WebSocket	



Back-end	Server	
•  Introducing	Coniql		

–  Python	applicaLon	originally	developed	by	Tom	Cobb,	DLS	
–  Uses	EPICS	Python	libraries	to	access	PV	data	=	aioca	

•  Built	on	top	of	asyncio	
•  API	calls:	caget,	caput,	camonitor,	cainfo 

–  GraphQL	Python	library	to	serve	data	to	the	web	UI	via	
WebSockets		=	Strawberry	GraphQL	

	
Coniql	

aioca	 Strawberry	



•  Open	source	query	language	&	runLme	engine,	
originally	developed	by	Facebook	

•  Client-server	model	

•  Supports:	
–  Query	->	get	read-only	data	
– MutaLon	->	modify	data	
–  SubscripLon	->	receive	event-based	updates	

•  Performance	and	flexibility	focused	

GraphQL	

Server	
Request	data	

Reply	with	data	
Client	



Code	

Schema	

Client	

code	first	

Strawberry	GraphQL	

ü Supports	code-first	schema:	
–  Types	
–  Resolver	funcLons	

ü Supports	both	new	(graphql-transport-ws)	and	
deprecated	(graphql-ws)	WebSocket	protocols	

ü Open	source	–	GitHub	
ü In	development	phase,		
acLvely	maintained	

	

Code	

Schema	 Client	

schema	first	



Client makes this request through a WebSocket	 Data returned for each field	

Simple	SubscripLon	Example	



Issues	Using	GraphQL	Libraries	

Issues	 Solu6ons	

Original	GraphQL	library	used	was	not	
well	maintained:	
Ø  Memory	leak	
Ø  No	support	for	new	WebSocket	

protocol	

Refactored	Coniql	to	use	Strawberry	



Issues	 Solu6ons	

Original	GraphQL	library	used	was	not	
well	maintained:	
Ø  Memory	leak	
Ø  No	support	for	new	WebSocket	

protocol	

Refactored	Coniql	to	use	Strawberry	

Ø  	Memory	leak	in	Strawberry	for	the			
new	WebSocket	protocol	

Ø  	Performance	issues	(CPU	usage)	with	
the	new	WebSocket	protocol	

	
Proposed	solu6on,	discussed,	fixed	and	
new	release	–	all	within	days	

Issues	Using	GraphQL	Libraries	



Issues	 Solu6ons	

Original	GraphQL	library	used	was	not	
well	maintained:	
Ø  Memory	leak	
Ø  No	support	for	new	WebSocket	

protocol	

Refactored	Coniql	to	use	Strawberry	

Ø  	Memory	leak	in	Strawberry	for	the			
new	WebSocket	protocol	

Ø  	Performance	issues	(CPU	usage)	with	
the	new	WebSocket	protocol	

	
Proposed	solu6on,	discussed,	fixed	and	
new	release	–	all	within	days	

Compa6bility	issues	with	new	releases	 Pin	Strawberry	version	in	installaLon	

Issues	Using	GraphQL	Libraries	



Performance	Test	ObjecLves	

•  Demands	on	Coniql	are	high!	
–  1000s	of	PVs	
–  Rate	up	to	10	Hz	
–  100s	of	clients	

•  Needs	to	support:	
–  machine	status	displays	
–  operator	screens	across	mulLple	beamlines	
–  remote	access	to	these	screens	

	

Coniql	

client	

client	

client	

client	
client	

client	

client	
client	

client	

client	



Performance	Test	Procedure	

ConfiguraLons:	
-  Number	of	PVs	to	subscribe	to	
-  Update	frequency	(10	Hz)	
-  Number	of	incremental	updates	

to	collect	
-  Number	of	clients	

Coniql	 EPICS	IOC	
Performance	

Test	

WebSocket	
client	

CPU/memory	
monitor	

N	subscripLons	

Measurements:	
-  CPU	usage	
-  Memory	usage	
-  Number	of	dropped	updates	per	

subscripLon	



Performance	Test	Results	
•  Run	tests	on	Kubernetes	(reproducible)	
•  Test	parameters:	PVs	updaLng	at	10	Hz,	collecLng	36,000	samples	



Performance	Test	Results	
•  Run	tests	on	Kubernetes	(reproducible)	
•  Test	parameters:	PVs	updaLng	at	10	Hz,	collecLng	36,000	samples	

Number	of	
clients	

Number	of	
PVs	

Average	CPU	 Average	
number	of	
dropped	
results	

1	 10	 		20.52%	 0	

1	 50	 		53.32%	 0	

1	 100	 		74.55%	 0	

1	 200	 100.00%	 3,811	

1	 500	 100.00%	 101,829	

2	 50	 		73.70%	 0	

10	 10	 		75.47%	 0	

•  Slightly	disappoinLng…		



Performance	Test	Results	
•  Run	tests	on	Kubernetes	(reproducible)	
•  Test	parameters:	PVs	updaLng	at	10	Hz,	collecLng	36,000	samples	

Number	of	
clients	

Number	of	
PVs	

Average	CPU	 Average	
number	of	
dropped	
results	

1	 10	 		20.52%	 0	

1	 50	 		53.32%	 0	

1	 100	 		74.55%	 0	

1	 200	 100.00%	 3,811	

1	 500	 100.00%	 101,829	

2	 50	 		73.70%	 0	

10	 10	 		75.47%	 0	

•  Slightly	disappoinLng…		

✔ 100	PVs	=	OK	



Performance	Test	Results	
•  Run	tests	on	Kubernetes	(reproducible)	
•  Test	parameters:	PVs	updaLng	at	10	Hz,	collecLng	36,000	samples	

Number	of	
clients	

Number	of	
PVs	

Average	CPU	 Average	
number	of	
dropped	
results	

1	 10	 		20.52%	 0	

1	 50	 		53.32%	 0	

1	 100	 		74.55%	 0	

1	 200	 100.00%	 3,811	

1	 500	 100.00%	 101,829	

2	 50	 		73.70%	 0	

10	 10	 		75.47%	 0	

•  Slightly	disappoinLng…		

✔ 100	PVs	=	OK	

At	100%	CPU,	updates	
are	dropped	



•  Used	sampling	profiler	to	idenLfy	problems	
(mostly	unnecessary	async	processing	&	duplicate	data	for	mulLple	clients)	

Performance	Improvements	



Number	of	
clients	

Number	of	
PVs	

Average	CPU	 Average	
number	of	
dropped	
results	

Average	CPU	 Average	
number	of	
dropped	
results	

1	 10	 		20.52%	 0	 		13.69%	 0	

1	 50	 		53.32%	 0	 		34.53%	 0	

1	 100	 		74.55%	 0	 		57.91%	 0	

1	 200	 100.00%	 3,811	 		92.60%	 16	

1	 500	 100.00%	 101,829	 100.00%	 66,929	

2	 50	 		73.70%	 0	 	51.88%	 0	

10	 10	 		75.47%	 0	 	51.73%	 0	

AMer	performance	improvements	

Performance	Improvements	
•  Used	sampling	profiler	to	idenLfy	problems	

(mostly	unnecessary	async	processing	&	duplicate	data	for	mulLple	clients)	



Number	of	
clients	

Number	of	
PVs	

Average	CPU	 Average	
number	of	
dropped	
results	

Average	CPU	 Average	
number	of	
dropped	
results	

1	 10	 		20.52%	 0	 		13.69%	 0	

1	 50	 		53.32%	 0	 		34.53%	 0	

1	 100	 		74.55%	 0	 		57.91%	 0	

1	 200	 100.00%	 3,811	 		92.60%	 16	

1	 500	 100.00%	 101,829	 100.00%	 66,929	

2	 50	 		73.70%	 0	 	51.88%	 0	

10	 10	 		75.47%	 0	 	51.73%	 0	

AMer	performance	improvements	

Performance	Improvements	
•  Used	sampling	profiler	to	idenLfy	problems	

(mostly	unnecessary	async	processing	&	duplicate	data	for	mulLple	clients)	



Kubernetes	Deployment	
•  MiLgate	the	performance	issue	using	

Kubernetes:	
–  Deploy	8	replicas	->	client	connecLons	

are	load	balanced	

	

Client	

Client	

Coniql	

Coniql	

Coniql	Client	

•  Currently	this	can	comfortably	support	~	50	machine	status	displays	



Future	Plans	

•  Currently	need	many	Kubernetes	replicas…	
	 	 	 	 	 	…	large	amount	of	resources	

•  InvesLgate	schema	changes	to	increase	throughput	
in	low	level	code	(further	improve	performance?)	

•  Consider	alternaLves	to	GraphQL…	
	 	 	 	 	 	…	PV	WebSocket	(pvws)	?	


