Lessons From Using Python Gr

Libraries to Develop an EPICS P
Server for Web Uls

S350

Rebecca Auger-Williams, Observatory Sciences Ltd, St lves, UK 6

Abigail Alexander, Tom Cobb, Martin Gaughran, Austen Rose, Alexander Wells,
Andrew Wilson,

Diamond Light Source, Harwell, UK diamond

‘()RY s

OBSE”b

 Diamond Il upgrade prompted Ul re

(&

s
«
2
(o]
m
G

Motivation

e

Synoptic - BL19I

Small Molecule Single Crystal Diffraction

Summary Screens

@ ww Optics Hutch R e Experimental Hutch 1 @
wesd s e
o 1 o
Fove
S detomter i cocamear =3 “etombar X
= o) Edl o Detector bump strip HIT [
i i : : - GPIO Signals
Atcam 'mcm i DzcaM Dscam | Dicam [
i i P
] v " : RoBoT GPI0
“ H‘ 1’ & i B EEI@ o @ @@ﬁé@@@g
l‘ i ! T e] i® BLOTC Gas Rig
s e E 5o | uance] o amren| ece | sa| e revs | onvz | raou] vt | s | s | s | et | sca | e
1—|J N
av| Endstation
Line 1 MY
Sy L §
I 2 = ==
button is green - Line 2 a
a
Port DCM FE Beam Experiment Which EH Front End ovs| e ovay)
Shutter Energy Permit Shutter 1 inuse? Fesdback(:nnﬁnl 119 New Equipment| | EH1 Equipment Temperatures
ﬂ - - Cciose 1) [[v Eautoment | [water Fiows | L., -
_ [Closed.] _ %
[Avarm Handier | i Jioer | %
e Ring Energy Ring Current D Gap - Fill Lifetime. Mode Top Up scan | Asyn [Interiocks ¥ & ® ove| I
o) | I G o = Buttarfly
XPS Control [\t e
ow| M, | W—
el — 2y
- T | - w1
= [\ om| o
Quidising | o1 ovs| b3 N
s I X
Cabinet T ov] ave|
ovd
Y @
¥ Turb
oo pump o
: ove -
3 I
e o
Sammacie | ovd = Ballast Valve
b — iJ - X
.. I —— =] 2 o | o)
— v ‘
X ﬁl wrcou }—l—_fl—
ovo| Seroll Pump Diaphragm
Zero Flow (Al MFCs) ovas| Pump
LEV EXIT

‘()RY s

=% (&
x
w
)
«©
o

S350

* Existing and potential solutions:

EDM

» 0Old technology
becoming difficult to
deploy

CS-Studio

(Eclipse based)

» Deprecated

» Heavyweight

» Complex build system

Motivation

Phoebus]

» Existing solution

Welb U]

» Truly cross-platform

» No installation

> Best experience for
remote usage

‘()RY s

=% (&
x
w
)
«©
o

S350

* Existing and potential solutions:

EDM

» 0Old technology
becoming difficult to
deploy

CS-Studio

(Eclipse based)

» Deprecated

» Heavyweight

» Complex build system

Motivation

Phoebus]

» Existing solution

Web UI "4

» Truly cross-platform

» No installation

> Best experience for
remote usage

Prototype Web U
* Introducing cs-web-proto created in

Backend - Frontend

I Open screer
WebSocket Welcome!

| = . This is the home page for the prototype web application
y ‘ s] \ under development at Diamond Light Source.
Data Se rver To take a look around, open the menu with the button
at the top left corner of the page.

E‘E‘Iﬁ e python @ Gra;thI—

1S cs-web-proto how outling
X

Browser

Ul framework: @ React

Data management: (@) Redux

‘()RY
K S
.

w

wv

o
/o)

* Introducing Coniql &
— Python application originally developed by Tom Co

— Uses EPICS Python libraries to access PV data = aioca
* Built on top of asyncio

S350

Back-end Server

* API calls: caget, caput, camonitor, cainfo

— GraphQL Python library to serve data to the web Ul via
WebSockets = Strawberry GraphQL

python
%?'Conkﬂ
:
E....IPIC.S.< >i aioca iStrawberry ‘<—>@ GraphQL

‘()RY s

@ GraphQL

* Open source query language & runtime en
originally developed by Facebook

* Client-server model
[] Request data
<€
>
Reply with data
* Supports:

— Query -> get read-only data

— Mutation -> modify data
— Subscription -> receive event-based updates

* Performance and flexibility focused

Strawberry \

v' Supports code-first schema: . ..

— Types Code |

— Resolver functions " Schema |

(}ent _Schema | _ Client |

4 Supports both new (graphql—transport—ws) and
deprecated (graphqgl-ws) WebSocket protocols

v Open source — GitHub

v" In development phase, Timeline
actively maintained e

B 5 issues
+0 this week (817 total)

O 12 pull requests
Thu Fri Sat Sun Mon Tue Wed +4 this week (2.2k total)

V‘ORY s

(&

AN 7/
- «
wy -
wv o)
o m
o) (<]

Client makes this request through a WebSocket

Simple Subscription E

1v subscription {
subscribeChannel(id: "

id

time {

ca://temperature:water"

datetime

value {
string
float

11w display f{
12 units
controlRange {
max
min

"data": f
"subscribeChannel":
"id": "ca://temperature:water”,
"time":

"datetime": "2023-09-20T14:21:17.939171"
"value":

"string": "50.50",

"float": 50.5

'

"display":
"units": "C",
"controlRange":

"max": 100,

"min": 0

Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak
» No support for new WebSocket
protocol

Issues Using GraphQL Li

Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak

» No support for new WebSocket

protocol

» WMemory leal in Strawberry for the
new WebSocket protocol Proposed solution, discussed, fixed and

» Performance issues (CPU usage) with new release — all within days

the new WebSocket protocol

Issues Using GraphQL Li

Solutions

Original GraphQL library used was not Refactored Conigl to use Strawberry
well maintained:

» Memory leak

» No support for new WebSocket

protocol

» WMemory leal in Strawberry for the
new WebSocket protocol Proposed solution, discussed, fixed and

» Performance issues (CPU usage) with new release — all within days

the new WebSocket protocol

Compatibility issues with new releases Pin Strawberry version in installation

vﬁ()RY s

0/
«
z

sPerformance Test Obje

 Demands on Conigl are high! ST
— 1000s of PVs [, cIienL)‘-/'A‘ client

— Rate up to 10 Hz wclient) (SR

Y
&
w
v
o
o

client
) -

— 100s of clients o Jiant |
S~ client

* Needs to support:
— machine status displays
— operator screens across multiple beamlines

— remote access to these screens

‘oRY s

- (47
o«
z

sPerformance Test Pro

Y
&
w
v
o
o

#) python

WebSocket
client

Performance

ERICSIOC

CPU/memory
monitor

Configurations: Measurements:

- Number of PVs to subscribe to - CPU usage

- Update frequency (10 Hz) - Memory usage

- Number of incremental updates - Number of dropped updates per
to collect subscription

- Number of clients

‘oRY
K S
.

w

wv

o
/o)

* Run tests on Kubernetes (reproducible)

NFRTTEY

Performance Test R

* Test parameters: PVs updating at 10 Hz, collecting 36,000 s

Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU Average h Slightly disappointln
clients PVs number of

dropped

results

20.52%
53.32%

74.55%
100.00% 3,811
100.00% 101,829
73.70% 0
75.47% 0

Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU Average h Slightly disappointin
clients PVs number of
dropped

results
1 10 PAVRSYA 0]
1 50 53.32% 0

100 74.55% 0 100 PVs = OK
100.00% 3,811

100.00% 101,829
73.70% 0
75.47% 0

Performance Test Re

* Run tests on Kubernetes (reproducible)
* Test parameters: PVs updating at 10 Hz, collecting 36,000 sa

Number of Number of Average CPU Average - Slightly disappointin
clients PVs number of
dropped

results
1 10 PAVRSYA 0]
1 50 53.32% 0

100 74.55% 0 100 PVs = OK

100.00% 3,811 At 100% CPU, updates

are dropped

100.00% 101,829
73.70% 0
75.47% 0

s Performance Improve

e Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for

o +

s
«
2
m
G

m

Performance Improve

* Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for

\,

Number of Number of Average CPU Average Average CPU Average

clients PVs number of number of
dropped dropped
results results

1 10 20.52% 0) 13.69% 0

1 50 53.32% 0) 34.53% 0

1 100 74.55% 0) 57.91% 0]

1 200 100.00% 3,811 92.60% 16

1 o10]0) 100.00% 101,829 100.00% 66,929

2 50 73.70% 0) 51.88% 0

10 10 75.47% 0) 51.73% 0

After performance improvements

o +

s
«
2
m
G

m

Performance Improve

* Used sampling profiler to identify problems

(mostly unnecessary async processing & duplicate data for m¢

\

Number of Number of Average CPU Average Average CPU Average
clients PVs number of number of
dropped dropped
results results
10 20.52% 0) 13.69% 0

53.32% 0 34.53% 0
74.55% 0 57.91% 0
100.00% 3,811 92.60% 16
100.00% 101,829 100.00% 66,929
73.70% 0 51.88% 0
75.47% 0 51.73% 0

After performance improvements

V‘ORY s

Y
&
w
v
o
o

 Mitigate the performance issue using

N

ERLE

Kubernetes Deploy

Kubernetes:

— Deploy 8 replicas -> client connections

are load balanced

Client

| Client

Client

* Currently this can comfortably support ~ 50 machine status displays

Last Fill | Top-up Status

Current (mA)

300

Fill Pattern Flback Status
-12

=]
(=]

Lifetime (h)

1 1 1 |
N B -} ©

20 Sep 2023 14:44:33
Current

‘()RY
K o
&

w

wv

(==}
o

* Currently need many Kubernetes replicas...
... large amount of resources

S350

Future Plans

* |nvestigate schema changes to increase throughput
in low level code (further improve performance?)

* Consider alternatives to GraphQL...
... PV WebSocket (pvws) ?

