
Using BDD testing in SKAO:
Challenges and Opportunities

Presenter: Verity Allan,
University of Cambridge
Co-authors: Giorgio Brajnik, Ray Brederode

email: vla22@cam.ac.uk.uk

Telescope Design

Component & Connector
View of the Observatory
software.
TMC = Telescope
Monitoring & Control
SDP = Science Data
Processor
CSP = Central Signal
Processor
SRC = SKA Regional
Centre

TMC CMOPONENTS

SAFeⓇ

● Planning Intervals (PIs) lasting 1 quarter
○ containing a Planning week

● Agile teams

Goals

● test often & quickly
● help devs find bugs
● stakeholders can validate spec
● it’s economic

Challenges

● Many domains
● Diverse skill levels
● High autonomy
● needs multiple teams
● specialist hardware, requiring complex integration environments.
● under resourcing of integration
● highly distributed teams

Why BDD?

● specification by example
○ you know what the system should do

● test steps specified in a simple format
● development of Domain specific language (DSL)
● results in living documation

SDP scenario

Given I connect to an SDP subarray
And obsState is READY
When I call Scan
Then obsState is SCANNING
And scanID has the expected value

TMC BDD scenario with examples

 Given I connect to an SDP subarray
 And obsState is <obs_state>
When I call <command> with an invalid JSON configuration
Then the device raises an API_CommandFailed exception

 Examples:
 | obs_state | command |
 | EMPTY | AssignResources |
 | IDLE | Configure |
 | READY | Scan |

SKAO Test Environments

● Cloud
● PSIs (Prototype System Integration environments):

○ Canada, Netherlands, Australia
● ITFs (Integrated Test Facilities):

○ South Africa & Australia

What can we test where?

Environment unit tests signal chain
tests

software
component
integration
tests

basic
performance
tests

large
performance
tests

Cloud X X X

PSI X X X

ITF X X X

HPC system (X) X

Observing State

To reach the READY state
from the EMPTY state,
we must pass through
RESOURCING, IDLE,
and CONFIGURING.

What did we find? The bad bits

● Plenty of technical issues
○ testing finite state automata
○ details of Tango implementation
○ complexity of test setup/teardown

● Social issues:
○ lack of knowledge of how to specify tests
○ feeling that tests couldn’t be changed
○ communications issues with our distributed nature
○ resourcing for integration testing and testware

What did we find? (the good bits)

● We found new bugs
● We found gaps in our design
● Everyone involved got a better understanding of the system
● The nucleus of our DSL

Conclusions

● BDD testing is a powerful tool
○ it can uncover issues in your organisation!
○ this will make your system better when fixed!
○ The nature of finite state automata means you need to take more

time over testware.
■ This will pay off for long-lasting projects.

Any questions?

