
Continuous Integration and Debian
Packaging for Rapidly Evolving
Software
Jens Georg (Presenter),
Anthony Barker (Corresponding Author),
Martin Hierholzer, Martin Killenberg,
Tomasz Kozak, Dietrich Rothe,
Nadeem Shehzad, Christian Willner

ICALEPCS 2023

Cape Town, 09.10.2023

Introduction

C++ software libraries usually guarantee binary compatibility within a minor release

version

> Stable interface for dependent projects

Binary compatibility of libraries comes with a price

> Requires resources to maintain and check

> Development is less flexible because ABI and API must not change

We decided to not have binary compatibility

+ Required flexibility for our workflow

– All dependencies have to be re-compiled each time

Challenges for Debian packaging and continuous integration!

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 2

http://creativecommons.org/licenses/by/4.0/

Debian packaging

Debian packages for libraries

> Library packages are binary compatible for the lifetime of a distribution

> Binary incompatible changes require a new package name

⇒ Add the major and minor version number to the package name

Extended minor version number

If the dependency of a library changes the ABI

> …library package name has to change as well, even if the library versions have not

changed

> …installed versions of the library must be distinguishable for the linker

⇒ Add a build version to the minor version number

Example Debian package name: libchimeratk-deviceaccess03-11-focal1
Example .so file name: libChimeraTK-DeviceAccess.so.03.11focal1
DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 4

http://creativecommons.org/licenses/by/4.0/

Debian packaging scripts

If a library without binary compatibility is re-packaged, all dependent libraries have to be

re-built as well.

ChimeraTK Debian packaging scripts

> Dependency database as files on a folder structure

> Automatically increase build version when necessary

> Reverse dependency lookup

Identify all libraries which need to be rebuild

Build in the correct order

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 5

http://creativecommons.org/licenses/by/4.0/

Screenshot: Master packaging script

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 6

http://creativecommons.org/licenses/by/4.0/

DeviceBackends as runtime loadable plugins

DeviceBackends

> Access hardware (PCIe)

> Access control system device servers (DOOCS, EPICS, OPC UA)

Depends on the control system software stack

Typical applications are linked to a particular backend.

Generic applications

> …should work with all backends

> …don’t want to link against all possible CS SW stacks

⇒ Load backends when needed

Plugin loading mechanism

> Needs binary compatibility

⇒ You have to load the exactly matching library version
DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 7

http://creativecommons.org/licenses/by/4.0/

Meta packages

Device backends (loadable plugins)

> Don’t have a version in the name

⇒ Meta package which provides .so-file without version

DeviceAccess core library

> Empty meta package without version in the package name as dependency anchor

> Plugin meta packages and generic applications depend on the exact version of the

DeviceAccess meta package

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 8

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.11focal1

libchimeratk-deviceaccess03-11-focal1

= 03.11focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.11focal1

libchimeratk-deviceaccess03-11-focal1

= 03.11focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.12focal1

libchimeratk-deviceaccess03-11-focal1

= 03.11focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.12focal1

libchimeratk-deviceaccess03-12-focal1 libchimeratk-deviceaccess03-11-focal1

= 03.11focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.12focal1

libchimeratk-deviceaccess03-12-focal1 libchimeratk-deviceaccess03-11-focal1

= 03.12focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Example for dependencies

qthardmon

libchimeratk-deviceaccess

libchimeratk-deviceaccess-doocsbackend

= 03.12focal1

libchimeratk-deviceaccess03-12-focal1 libchimeratk-deviceaccess03-11-focal1

= 03.12focal1

libchimeratk-deviceaccess-doocsbackend01-07-focal2

libchimeratk-deviceaccess-doocsbackend01-07-focal3

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 9

http://creativecommons.org/licenses/by/4.0/

Continuous integration

Continuous Integration

> Large software stack

More than 20 ChimeraTK libraries and tools

More than 30 application projects

> Lots of interdependencies between the projects

All dependent projects must be triggered

Projects compiled many times due to diamond dependencies

Many false ”failed” runs in case of binary incompatibility

Jenkins might be overloaded if too many jobs are triggered

Solution

> Don’t use Jenkins’ built-in dependency triggering

> Implement a dependency database via Groovy scripts

> Each job knows and triggers its dependencies

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 11

http://creativecommons.org/licenses/by/4.0/

Diamond Dependencies

GenericDeviceServer

ApplicationCore ControlSystemAdapter-DoocsAdapter DeviceAccess-DoocsBackend

ControlSystemAdapter DoocsServerTestHelper

DeviceAccess

> GenericDeviceServer is triggered 3 times if DeviceAccess changes

> First two builds fail in case of binary incompatible changes

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 11

http://creativecommons.org/licenses/by/4.0/

Continuous Integration

> Large software stack

More than 20 ChimeraTK libraries and tools

More than 30 application projects

> Lots of interdependencies between the projects

All dependent projects must be triggered

Projects compiled many times due to diamond dependencies

Many false ”failed” runs in case of binary incompatibility

Jenkins might be overloaded if too many jobs are triggered

Solution

> Don’t use Jenkins’ built-in dependency triggering

> Implement a dependency database via Groovy scripts

> Each job knows and triggers its dependencies

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 11

http://creativecommons.org/licenses/by/4.0/

Continuous Integration

> Large software stack

More than 20 ChimeraTK libraries and tools

More than 30 application projects

> Lots of interdependencies between the projects

All dependent projects must be triggered

Projects compiled many times due to diamond dependencies

Many false ”failed” runs in case of binary incompatibility

Jenkins might be overloaded if too many jobs are triggered

Solution

> Don’t use Jenkins’ built-in dependency triggering

> Implement a dependency database via Groovy scripts

> Each job knows and triggers its dependencies

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 11

http://creativecommons.org/licenses/by/4.0/

Extensive testing

> Check that the code compiles

> Check for compiler warnings

> Use multiple compilers

> Run unit tests

> Check for memory leaks

> Check for timing races

> Build for multiple target platforms

> Make debug and release builds

Testing a single project can take long

> C++ code with templates takes several minutes to compile1

> Tests with network based protocols: > 30 min

> Tests take much longer to compile than library itself

Testing the whole stack took more than 5 hours!
1 on a dedicated build host with 256 cores and 1 TB RAM

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 12

http://creativecommons.org/licenses/by/4.0/

Implementing a "fast track"

Goal: Improve the time until you get results

fast track

> Only compile the libraries

> Only debug build for 1 target with 1

compiler

> Immediately trigger dependent

projects when ready

fast track testing

> Compile the tests

> Run unit tests

nightly build

> All build types

> All target platforms

> Multiple compilers

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 13

http://creativecommons.org/licenses/by/4.0/

Results of the improvements

+ False ”failed” test results due to diamond dependencies are resolved

+ ”Fast track” only takes 20 minutes for all libraries

– ”Fast track” still too slow for immediate feedback

– Jenkins still runs out of memory or becomes unresponsive

– Jobs fail if a downstream project cannot be started or crashes

⇒ new source of false ”failed” test results

– Groovy scripts often fail for unknown reasons (too complex?)

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 14

http://creativecommons.org/licenses/by/4.0/

Conclusion

Not having binary compatibility for libraries poses challenges to Debian packaging and

continuous integration

> Version numbers as part of the package name X

> Automated packaging scripts with a dependency database X

> Binary compatible plugins using version dependencies in meta packages X

> Groovy scripts with dependency database solve diamond dependencies X

> Jenkins ”fast track” X

> ”Fast track” still too slow for immediate feedback !

> Large code base and extensive tests bring Jenkins to its limits !

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 15

http://creativecommons.org/licenses/by/4.0/

Thank you!

Contact

DESYª Deutsches Anthony Barker

Elektronen-Synchrotron 0000-0003-2631-1029
MSK
anthony.barker@desy.de

www.desy.de +49–40–8998–4289

DESYª | Continuous Integration and Debian Packaging for Rapidly Evolving Software | Jens Georg (Presenter) | ICALEPCS 2023, Cape Town, 09.10.2023 Page 16

https://www.orcid.org/0000-0003-2631-1029
mailto:anthony.barker@desy.de
http://creativecommons.org/licenses/by/4.0/

