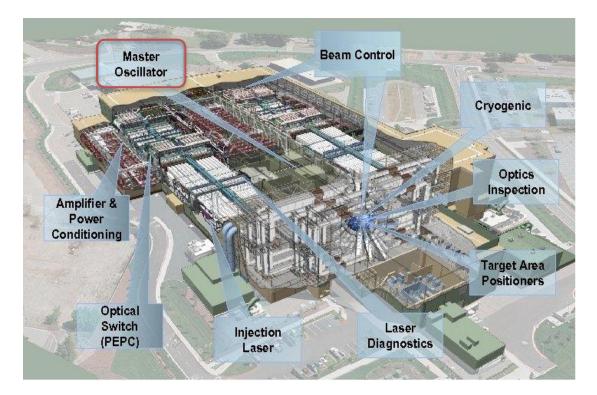
Embedded Controller Software Development Best Practices at the National Ignition Facility

19th International Conference on Accelerator & Large Experimental Physics Control Systems (ICALEPCS 2023)

Oct 09, 2023

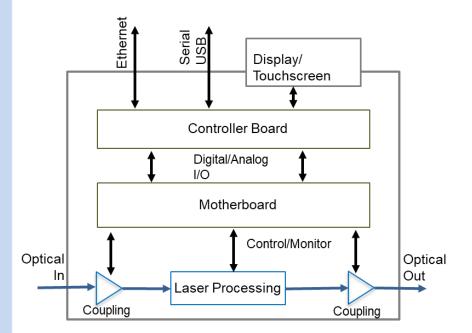

Vinod Gopalan NIF Integrated Computer Control System (ICCS)

LLNL-PRES-854612

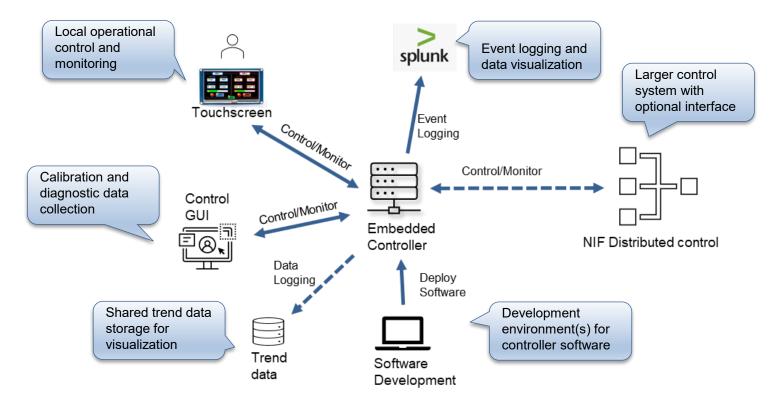
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

NIF Master Oscillator Room (MOR) Embedded Controllers

- NIF controls use embedded controllers in several critical subsystems such as Power Conditioning and MOR.
- Several MOR embedded controller types: optical amplifiers, failsafe switches, phase modulators, RF oscillators and RF switches.


NIF controls employ ~1000 embedded controllers out of which, over a 100 are in the MOR.

LLNL-PRES-854612 MO2BCO06_talk.pptx – Vinod Gopalan – ICALEPCS 2023 – October 09, 2023

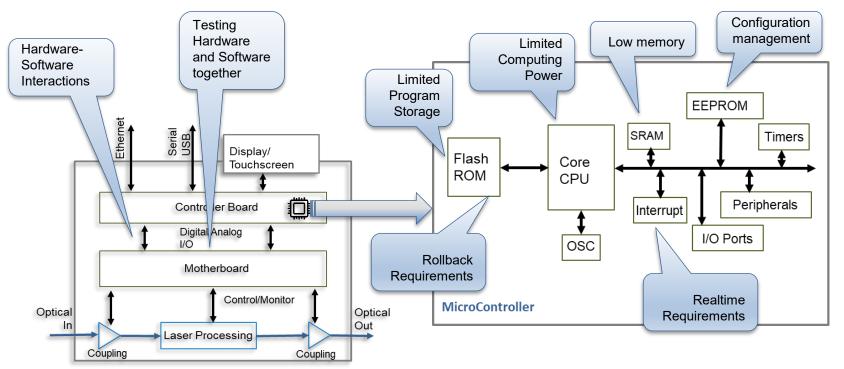

Embedded Controllers (EC) - Generic Architecture

- Controller board
 - Handles primary logic and control operations
 - Communicates with the motherboard over Digital/Analog I/O
 - Provides external command/monitor interfaces
 - Facilitates software update
- Motherboard
 - Bridges the controller board to hardware components
 - Signal conditioning, ADC, DAC etc.
- Hardware components
 - Core hardware functions of the EC device
 - Includes devices such as pump diodes, which are driven by signals from the motherboard

Embedded Controllers - Operational ecosystem

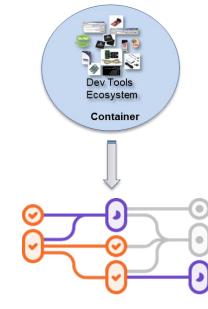
The operational ecosystem is designed to ensure robust operational control and autonomy

Complexity of the development ecosystem


- Embedded PCs, AVR, and PIC based designs
- Broad range of programming tools
- Extensive ecosystem of test and diagnostic tools
- Siloed development environments
- Challenges in compatibility, version control, and developer expertise.

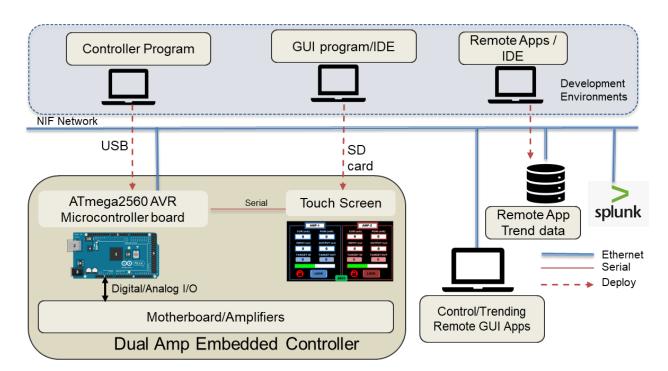
There's a need for a unified development system that can solve the ecosystem's challenges

Embedded controller development challenges


The unified system must address additional challenges of the microcontroller-based system.

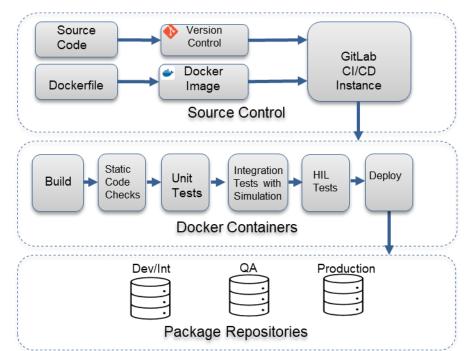
Best Practices Overall Strategy

- Utilizing Containers to Encapsulate Complex Development Tools Ecosystem
- A Streamlined Software Development Process based on CI/CD Best Practices
- Adopting Open-Source Components
- Coding Practices Tailored for Low Memory, Computationally Constrained Systems
- Simulation
- Hardware-in-the-Loop (HIL) Testing


CI/CD pipeline

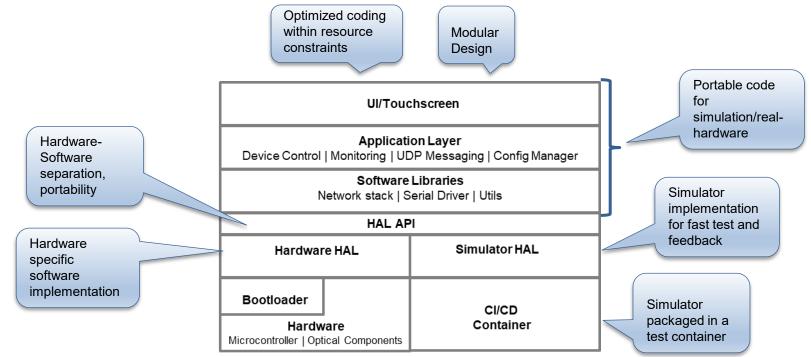
By integrating containerized ecosystems with CI/CD pipelines and extensive automated testing frameworks, the embedded controller development challenge can be overcome.

MOR Dual Amplifier (DUAL-AMP) - Ecosystem


- 3 distinct software environments
- Complex ecosystem of programming tools, test and diagnostic tools
- A variety of hardware interfaces
- Real time performance requirements
- Resource constrained controller hardware
- Several deployment scenarios
- Challenges in version control and configuration management

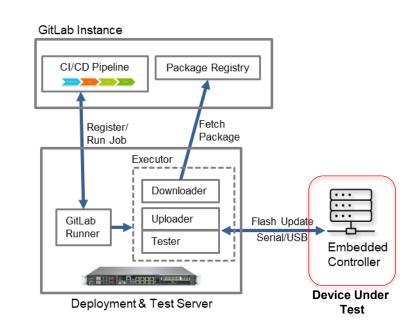
The DUAL-AMP represents the complexity and challenges encountered in embedded controller development

Building a CI/CD Pipeline


- Version control of all artifacts
- Docker container creation
 - Packaged ecosystem for all tools
- Integration of all process steps into the CI/CD pipeline
- Simulation and Hardware-In-the-Loop (HIL) testing
- Deployment configuration for offline and production environments

A robust CI/CD pipeline for embedded controllers requires careful integration and orchestration of several steps.

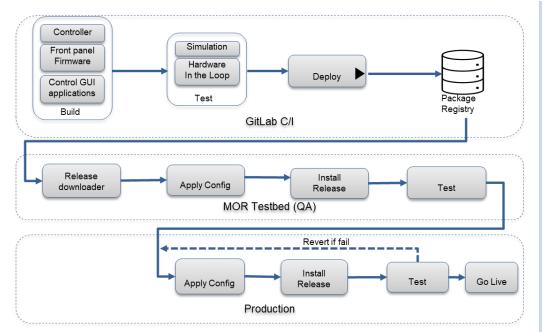
Software Architecture


Software modularity is essential for robust CI/CD pipelines to ensure testability.

Lawrence Livermore National Laboratory LLNL-PRES-854612 M02BC006 talk.pptx - Vinod Gopalan - ICALEPCS 2023 - October 09, 2023

Hardware In the Loop (HIL) testing

- HIL Test Setup
 - Dedicated HIL Deployment and Test server
 - Direct interface with the embedded device through serial/USB connection
- GitLab Pipeline Job for HIL
 - Utilizes GitLab runner on the Deployment Server
 - Downloads software build package from GitLab package repository
 - Updates software in the controller via the serial/USB interface
- Post-Deployment Phase
 - Activation of automated test scripts
 - Evaluation of controller functionalities under various conditions
- Feedback and Logging
 - Results fed back into the pipeline
 - Flags results and logs test information on the GitLab server



HIL testing effectively makes *continuous* hardware integration a primary element in the CI/CD pipeline.

Software development life cycle

- Post CI/CD: Rigorous QA Evaluation
 - Manual assessment in production-like setup
 - Two-step process:
 - Apply configuration data using config tool
 - Deploy actual image
- Production Deployment
 - Similar two-step process as QA
 - Allows straightforward revert strategy
 - Utilize previous release package
 - Follow the same two-step procedure

Config Tool Features

- Custom-built for the specific embedded controller
- Manages EEPROM configuration :
 - Versioning
 - Integrity checks
 - Schema changes
 - Revert operations

QA and production deployment processes add support for version management, configuration data management and rollback.

Results and Lessons Learned

 Successfully implemented a complete CI/CD pipeline for an MOR Dual Amp embedded controller using software best practices

prepare		static-check		build		test		deploy	
(build-avrci-docker-image		Static-check-config-tools	C	Solution build-config-tools	C	🙆 test-hil		(deploy	
prepare-version	C	Static-check-controller	C	🕑 build-controller	C	(test-real			
						Test-simulator	C		
						I unit-test	C		

- Modularization-Performance Tradeoff
 - A crucial balance had to be struck between optimizing runtime performance and preserving a modularized structure
- Increased Initial Time Investment
 - Extensive scripting and configuring for automation, establishing test environments, fine-tuning the pipeline for optimal performance

Future Directions

Integration of Direct Network Update

- Currently, through USB/serial
- Potential for direct network updates with bootloader support
- Requires additional network setup and support
- Enhancing Hardware-in-the-Loop (HIL) Testing
 - Full connectivity of all inputs and outputs
 - Generation of comprehensive stimulations

Harmonization of Hardware Platforms

- Consolidate to one or a few platforms
- Aims to streamline processes and enhance efficiency

