
Strategy and Tools to Test Software in the SKA Project:
The CSP.LMC Case

Gianluca Marotta, Elisabetta Giani, Ivana Novak, Martino Colciago, Giorgio
Brajnik and Carlo Baffa

Slide /

What do we want to achieve?

2

How to make our software component 100% reliable?

Slide

Slide /

What do we want to achieve?

2

How to make our software component 100% reliable?

Maybe it’s impossible…

Slide

Better questions are:

Slide /

What do we want to achieve?

How to make our software component 100% reliable?

Maybe it’s impossible…

- How to make our software component as reliable
as possible?

Better questions are:

2Slide

Slide /

What do we want to achieve?

How to make our software component 100% reliable?

Maybe it’s impossible…

- How to make our software component as reliable
as possible?

Better questions are:

- How to quantify the reliability of our
software component?

Slide 2

Slide /

Outline

6

● What are we testing ?
- The SKA telescope
- The CSP-Local Monitoring and Control
- The CSP.LMC and its environment

● How are we testing it?
- Testing SKA Software
- Unit / Component / Integration
- Code structure
- Fault Conditions Analysis

● When and where are we testing it?
- CI/CD pipeline

● Improve and quantify “reliability”
- Data mining on test results

3Slide

Slide /Slide

Mid Telescope

The SKA telescope

4

What are we testing?

The Square Kilometer Array (SKA) is an international effort to
construct the world’s biggest radio telescope.

Ref: skao.int
(1) Data for SKA1 implementation

Low
Telescope

Location: South Africa
350 Mhz to 15.3 GHz

197 dishes - max baseline: 150km(1)

Location: Australia
50 MHz to 350 GHz

131000 antennas- max baseline: ~65km(1)

Slide /Slide

The SKA telescope

5

What are we testing?

SKA will produce a huge amount of data

Ref: skao.int
(1) Data for SKA1 implementation

SKA-MID
dishes

SKA-LOW
antennas

Central
Signal

Processor
(CSP)

Science
Data

Processor
(SDP)

7.2 Tb/s for Mid (1)

8.8 Tb/s for Low (1)

~5 Tb/s (1) ~600 Pb/yr (1) …to SKA
Regional
Centers

(SRC)

- The purpose of CSP is to correlate, filter and make a preliminary analysis

- SDP makes further data reduction

- SRC stores data and made them available for scientific analysis

Slide /Slide

The SKA telescope

5

What are we testing?

SKA will produce a huge amount of data

Ref: skao.int
(1) Data for SKA1 implementation

SKA-MID
dishes

SKA-LOW
antennas

Central
Signal

Processor
(CSP)

Science
Data

Processor
(SDP)

7.2 Tb/s for Mid (1)

8.8 Tb/s for Low (1)

~5 Tb/s (1) ~600 Pb/yr (1) …to SKA
Regional
Centers

(SRC)

- The purpose of CSP is to correlate, filter and make a preliminary analysis

- SDP makes further data reduction

- SRC stores data and made them available for scientific analysis

… let’s zoom in!

Slide /Slide

The CSP.Local Monitoring and Control

6

What are we testing?

Central Signal Processor (CSP)

… to
SRCs

Local Monitoring and Control
(CSP.LMC)

SDP

Correlator
and

Beam
Former
(CBF)

PulSar
Search (PSS)

PulSar
Timing (PSS)

Telescope Monitoring and Control (TMC)

data flow monitor/control

CSP.LMC provides the interface to
TMC without exposing CSP
internal complexity.

CSP is composed of 4 main
subsystems:

- 3 for data reduction (CBF,
PSS, PST);

- 1 for monitoring/control
(CSP.LMC)

Slide /Slide

The CSP.Local Monitoring and Control

6

What are we testing?

Central Signal Processor (CSP)

… to
SRCs

Local Monitoring and Control
(CSP.LMC)

SDP

Correlator
and

Beam
Former
(CBF)

PulSar
Search (PSS)

PulSar
Timing (PSS)

Telescope Monitoring and Control (TMC)

data flow monitor/control

CSP.LMC provides the interface to
TMC without exposing CSP
internal complexity.

This is our System Under Test! … let’s zoom in! (again)

CSP is composed of 4 main
subsystems:

- 3 for data reduction (CBF,
PSS, PST);

- 1 for monitoring/control
(CSP.LMC)

Slide /Slide

The CSP.LMC and its environment

7

What are we testing?

data flow monitor/control

Controller

Subarray 2

Subarray 1

A very simplified view of the internal structure…

CSP.LMC

Controller

Subarray 2

Subarray 1

…

Processor 1
… similar for
the other

subsystemsProcessor 2

…

CBF

- A software component is a TANGO
Device written in Python.

- Each TANGO Device is containerized and
orchestrated with Kubernetes (k8S)

Slide /Slide

The CSP.LMC and its environment

7

What are we testing?

data flow monitor/control

Controller

Subarray 2

Subarray 1

A very simplified view of the internal structure…

CSP.LMC

Controller

Subarray 2

Subarray 1

…

Processor 1
… similar for
the other

subsystemsProcessor 2

…

CBF

- A software component is a TANGO
Device written in Python.

Bugs and failures can happen anywhere!

- Each TANGO Device is containerized and
orchestrated with Kubernetes (k8S)

Software Component (e.g. CSP.LMC Subarray 2)

Python package

Tango Device Server

Kubernetes Pod

… let’s zoom in! (last time)

Slide /Slide

Testing SKA Software

8

The Software Engineering Group at SKAO is made by more than
100 developers organized into different Agile Teams

- Individual teams are responsible for a specific software subsystem, for its
quality and its testing strategy

- A Testing Community of Practice gather developers from different teams
to share knowledge and practices

Tests are essential to demonstrate and
validate functionalities in the framework
of Continuous Integration.

How are we testing it?

- Verification Tests based on requirements are done by AIV(1) teams

(1) Assembly, Integration and Verification

Slide /Slide

Unit Tests

9

(1) From SKAO “Software Testing Policy and Strategy”:

- “The testing of individual software units [...] that can be tested in
isolation.”(1)

Python test client

Mock

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Client Component

Python object

How are we testing it?

Slide /Slide

Unit Tests

9

(1) From SKAO “Software Testing Policy and Strategy”:

- “The testing of individual software units [...] that can be tested in
isolation.”(1)

- Test client is a python software
(pytest)

A “software unit” is a Python object:

Python test client

Mock

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Client Component

Pytest

Python object

How are we testing it?

Slide /Slide

Unit Tests

9

(1) From SKAO “Software Testing Policy and Strategy”:

- “The testing of individual software units [...] that can be tested in
isolation.”(1)

- The isolation is obtained by
using python mocks

- Test client is a python software
(pytest)

A “software unit” is a Python object:

Python test client

Mock

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Client Component

Pytest

Mock

Python object

Mock

How are we testing it?

Slide /Slide

Unit Tests

9

(1) From SKAO “Software Testing Policy and Strategy”:

- “The testing of individual software units [...] that can be tested in
isolation.”(1)

- The isolation is obtained by
using python mocks

- Test client is a python software
(pytest)

A “software unit” is a Python object:

- written with a Test Driven
Development (TDD) approach

Python test client

Mock

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Client Component

Pytest

Mock

Python object

Mock

How are we testing it?

Slide /Slide

Component Tests

10

(1) https://developer.skao.int/en/latest/policies/ska-testing-policy-and-strategy.html

- “Component testing aims at exposing defects of a particular component”(1)

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Client Component

Other Component

(1) From SKAO “Software Testing Policy and Strategy”:

Python object

How are we testing it?

Slide /Slide

Component Tests

10

(1) https://developer.skao.int/en/latest/policies/ska-testing-policy-and-strategy.html

- “Component testing aims at exposing defects of a particular component”(1)

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Client Component

Other Component

Python-Component Tests
Python test client

Python Mock

The “component” is the Tango Device

- Test client is pytest

- Other components are
substituted with python Mock

(1) From SKAO “Software Testing Policy and Strategy”:

Python object

How are we testing it?

Slide /Slide 11

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Other Component

● Test client is a tango client
running on a kubernetes pod.

Tango Client

Simulator

(1) From SKAO “Software Testing Policy and Strategy”:

k8s-Component Tests

The “component” is the kubernetes (k8s) pod

● Server components are simulators
(custom Tango devices in k8s)

● Test client can also inject
Simulator’s behavior (e.g. fault
conditions)

Inject behavior

How are we testing it?
Component Tests

- “Component testing aims at exposing defects of a particular component”(1)

Slide /Slide

Integration Tests

12

(1) https://developer.skao.int/en/latest/policies/ska-testing-policy-and-strategy.html

- “Testing performed to expose defects in the interfaces and in the interaction
between components [...](1)“

Component Under Test

Python package

Tango Device Server

Kubernetes Pod

Server Component

Other ComponentTango Client

- “Integration testing may also
include hardware-software
tests(1)”

How are we testing it?

Slide /Slide

Fault Conditions Analysis

13

Category(1) I II III IV V VI
Networking TangoDB

connection
Lost connection
with a still running
device

Lost connection
with a stopped
device

Event
subscription

Disconnection
during a
command
execution

Connection
timeouts*

Configuration Invalid
configuration

Unavailable
resources*

Unresponsive
subsystems*

Command
execution

Wrong inputs Command not
allowed

LMC device
failure*

Subsystem
device failure*

Slow execution*

Monitoring Device failures Conflicting events Race conditions

Infrastructure Failing/restarti
ng pods

Tango DB
configuration
errors

Tango DB
unavailability

(1)From CSP.LMC Fault Condition analysis

*errors that can be tested only with component tests

Fault Conditions tested in CSP.LMC:

How are we testing it?

Slide /

Testing Infrastructure

24

Running the same test on different context (python/k8s/integration) helps to
find the root of the failure

Component/Integration tests can be triggered by the same Gherkin syntax

- Decorators select the context
where to run the test

Slide 14

How are we testing it?

Slide /Slide

CI/CD pipeline

15

When and where are we testing it?

Tests are performed by a Continuous Integration & Delivery and/or
Deployment (CI/CD) Pipeline(1):

Integration tests can be triggered on different facilities, with and without
hardware.

● at every change of the code (automated regression tests);
● on demand;
● with scheduled periodic jobs

(1)M.Di Carlo et al. “CI-CD Practices at SKA” Proc SPIE 12189 (2022)

Slide /Slide 16

Improve and quantify “reliability”

Collecting information on test execution, will give us the possibility :

● to explore correlation between failures;
● to quantify the rate of success of a specific functionality.

Test name Result Version Date and Time Test Type Exec. time
(ms)

Facility Hardware Cause of
failure (log)

Category

Turn On
CSP

PASSED 0.16.2 29/09/2023
19:22

python-compone
nt

300 STFC // // Happy paths

Turn On
CSP

FAILED 0.16.2 29/09/2023
19:22

k8s-component 10000 STFC // See
attachment

Happy paths

Turn On
CSP

FAILED 0.16.2 29/09/2023
19:22

integration 10000 STFC NO See
attachment

Happy paths

Turn On
CSP

PASSED 0.16.2 29/09/2023
21:00

integration 20 PSI NO // Happy paths

Turn On
CSP

PASSED 0.16.2 29/09/2023
21:03

integration 450 PSI YES // Happy paths

… … … … … … … …

Data mining on test results

Slide /Slide 17

Conclusions

● data mining techniques can be used to collect and analyze the
results.

● a multi-level approach (unit/component/integration) is employed to
evaluate our software within distinct contexts

● A systematic approach has been devised for to the categorization
and testing of fault conditions

● testing infrastructure has been consolidated to eliminate redundancy
with shared testing scripts

Slide /

Thank you for your attention!

For further informations: gianluca.marotta@inaf.it

Any questions?

ffff

