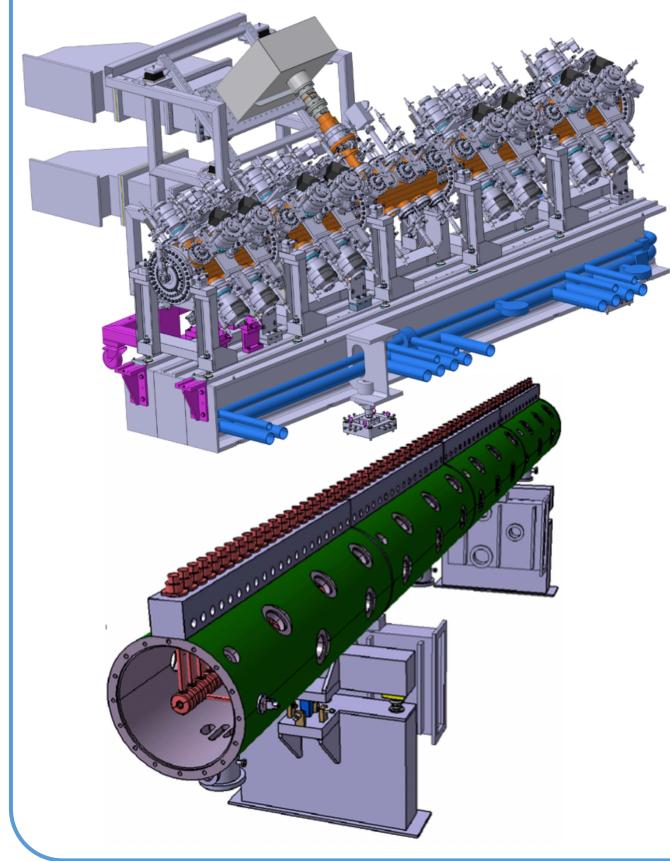
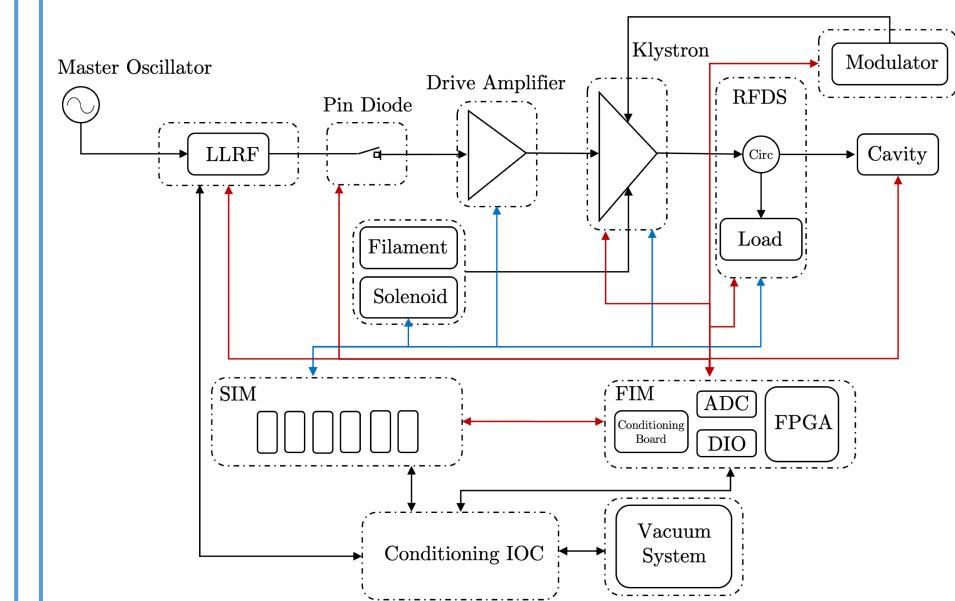
Automated Procedure for Conditioning of Normal Conducting Accelerator Cavities


E. Trachanas*, G.Fedel, S. Haghtalab, B. Jones, R. Zeng - European Spallation Source, Sweden A. Gaget, O. Piquet- CEA-IRFU, University Paris - Saclay, Gif-sur-Yvette, France Luca Bellan, Carlo Baltador, Francesco Grespan - INFN/LNL, Legnaro

EUROPEAN **SPALLATION** SOURCE

Abstract Radio frequency (RF) conditioning is an essential stage during the preparation. During this process the cavity field is gradually increased to the nominal parameters enabling the outgassing of the cavity and the elimination of surface defects through electrical arcing. However, this process can be time consuming and labor-intensive, requiring skilled operators to carefully adjust the RF parameters. This contribution presents the software tools for the development of an automatized EPICS control application with the aim to accelerate and introduce flexibility to the conditioning process. The results from the conditioning process of the ESS Radio-Frequency Quadrupole (RFQ) and the parallel conditioning of DriftTube Linac (DTL) tanks will be presented demonstrating the potential to save considerable time and resources in future RF conditioning campaigns.

Introduction


Radio-Frequency Quadrupole (RFQ)

-In Kind collaboration from CEA-Saclay -5 sections, total length of 4.55m. -Beam Energy: 75 keV-3.6 MeV protons -Resonance Frequency: 352.21 MHz -RF pulse: 780 kW, 3.2 ms, 14 Hz -Inter-vane voltage: 80-120 keV -Installed in 2019, Conditioned in summer 2021. -First proton beam injected in October 2021.

Drift Tube Linac (DTL)

System Architecture

Objective: Development of and IOC for automatize cavity conditioning process.

-Slow and Fast (<10 us) interlock handling. -RF Local Protection system (RFLPS)

- PLC based Slow interlock module (SIM) - FPGA based Fast interlock module (FIM) -LLRF for cavity amplitude and phase adjustment. -RFLPS and LLRF IOC (Input-Output Controller) state machine configuration.

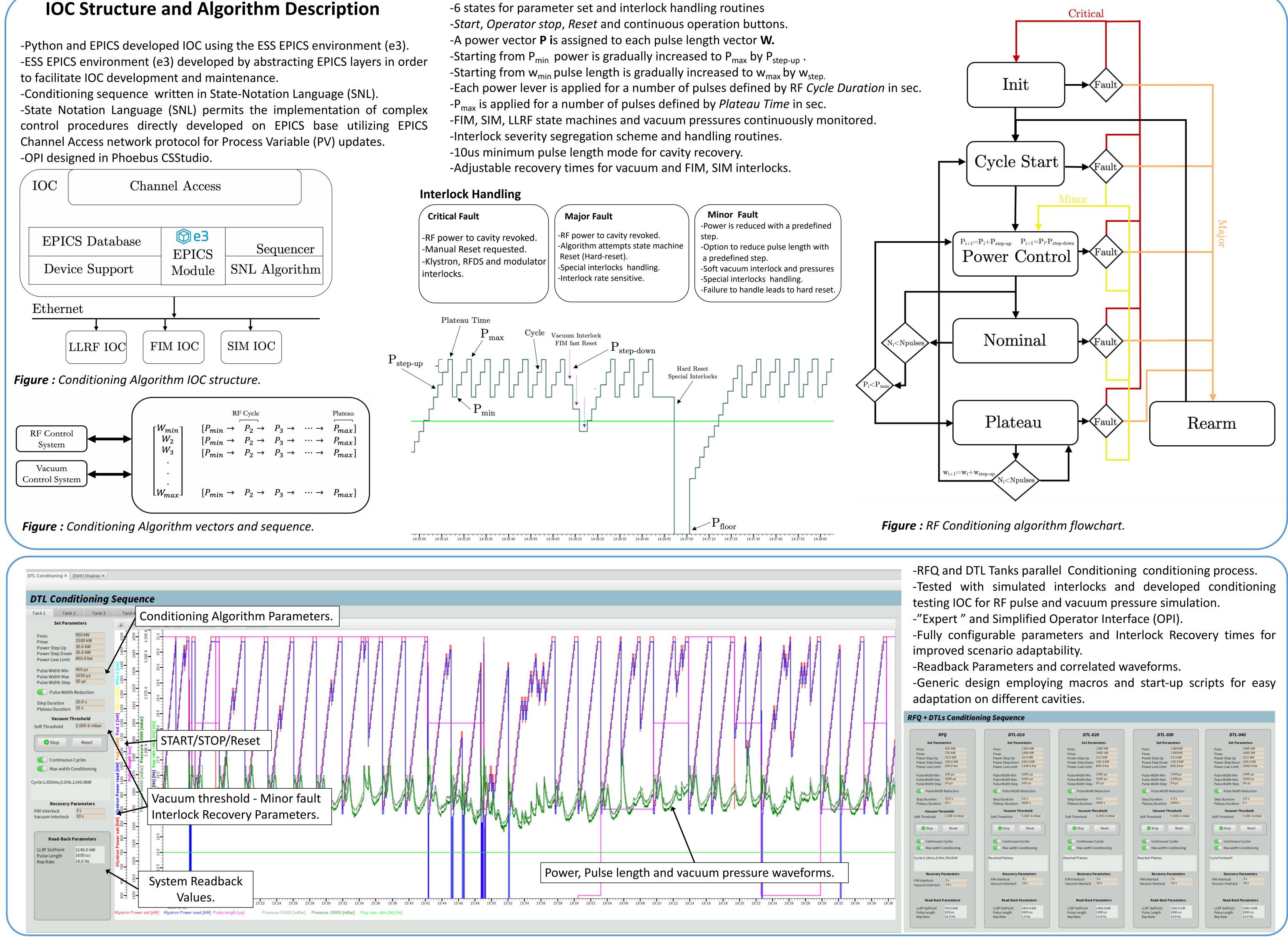
Conditioning IOC gradually increases the power (P). pulse length (w) and repetition rate (f) of the cavity while monitoring the interlocks from RF and vacuum control systems.

-In Kind collaboration from INFN -Total length 40 m, 5 tanks of 8 m each, -Beam Energy: 3.6 MeV-90 MeV protons -Resonance Frequency: 352.21 MHz -Cavity field: 3 MV/m , 3.2 ms, 14 Hz -DTL 1 Installed, conditioned and commissioned with beam in summer 2022. -DTL 2,3,4 Installed, conditioned and commissioned with beam in summer 2023.

-DTL 5 Installed at ESS tunnel in September 2023.

Figure : RF cavity simplified control system architecture.

Machine S	tata			C															
		DIL	-020	ľ	IM Reset:	FIM Reset	SIMO	P Mode:	Maintainance	•	Maintainance	ActualSta	ite: SIM:	AUX F	IM: IDLE		PLC Warning:	WARNIN	PLC Re
	IM Reset Ilck	System	Overview SIM Transition	s FIM Transitions	Diagno	stics													
Set State SIM:	AUX			Analog In	puts									Digital II	nputs				
RF			PV name	Description		pre HVON	pre RF ON		ILCK First		PV name		Descripti	ion	P	re HV ON	pre RFOM		ILCK First
FIM REON		RF1	DTL-020:RFS-PAmp-110:PwrFwd-	Pre-Amplifier power forwa	ard	OK Bypassed	OK Enabled		•	DI1	DTL-020:RFS-SIM-	110:HvEna-	HV enable	e command fron	n SIM	Enabled	NO Enabled		•
RFON-FIM-PRE PRE-RFON-SUP		RF2	DTL-020:RFS-Kly-110:PwrFwd-	PWR Amplifier power forw	ard	OK Bypassed	OK Enabled		•	D12	DTL-020:RFS-SIM-	110:RfEna-	RF enable	command from	I SIM	Bypassed	NO Enabled	-	•
SIM Pre-RF		RF3	DTL-020:RFS-Load-130:PwrFwd-	Reject Load power forwar	d	OK Bypassed	OK Enabled		0 1	D13	DTL-020:RFS-Mod	110:PCcon-	Modulato	r cable connect	ed 🖸	Enabled	OK Enabled		•
PRE-RFON-PRE	MISS	RF4	DTL-020:RFS-Kly-110:PwrRfl-	PWR Amplifier power refle	et [OK Bypassed	OK Enabled		•	D14	DTL-020:RFS-Mod	110:Ready-	Modulato	r Ready Status	N	Enabled	NO Enabled		•
HV		RFS	DTL-020:RFS-Cav-110:PwrFwd-	Cavity 1 power forward	I	OK Bypassed	OK Bypassed		• •	DIS	DTL-020:RFS-VacF	S-110:I-SP-	lon-pump	1 interlock	0	Enabled	OK Enabled		•
FIM HVON		RF6	DTL-020:RFS-Cav-120:PwrFwd-	Cavity 2 power forward		OK Bypassed	OK Bypassed		• •	DIG	DTL-020:RFS-VacF	S-120:I-SP-	lon-pump	2 interlock	0	Enabled	OK Enabled		•
HVON-FIM-PRE	-MISS	RF7	DTL-020:RFS-Load-120:PwrFwd-	Isolation Load power forw	ard	OK Bypassed	OK Enabled		0	D17	DTL-020:RFS-FIM-	L01:DI7-	RFLPS FI	4 DI7	0	Bypassed	OK Enabled		•
PRE-HVON-SUF		RF8	DTL-020:RFS-Cav-110:Fld-	Cavity Field		OK Bypassed	OK Bypassed		•	DIS	DTL-020:RFS-FIM-	L01:DI8-	RFLPS FI	4 DI8	0	Bypassed	OK Enabled		•
PRE-HVON-PRE		RF9	DTL-020:RFS-Cav-110:PwrRfl-	Cavity 1 power reflected		OK Bypassed	OK Bypassed		•	D19	DTL-020:RFS-VacM	Ion-110:Status-	Vacuum (avity 1	0	Bypassed	OK Enabled		•
A		RF10	DTL-020:RFS-Cav-120:PwrRfl-	Cavity 2 power reflected	i	OK Bypassed	OK Bypassed		•	DI10	DTL-020:RFS-FIM-	101:DI10-	RFLPS FI	4 DI 10	0	Bypassed	OK Enabled		•
Standby	,		DTL-020:RFS-Mod-110:Vol-	HV Modulator voltage way	veform	OK Bypassed	OK Enabled			0111	DTL-020:RFS-VacM	Ion.130-Status.	Vacuum (avity 1 Body		Bypassed	OK Enabled		•
STDBY-SUP-M	MISS	AI2	DTL-020:RFS-Mod-110:Cur-	HV Modulator current way		OK Bypassed	OK Enabled				DTL-020:RFS-FIM-		RFLPS FI			Bypassed	OK Enabled		•
STDBY		AI3	DTL-020:RFS-SoIPS-110:Cur-	Solenoid 01 current interl		NO Enabled	NO Enabled				DTL-020:RFS-FIM-		RFLPS FI			Bypassed	OK Enabled		o o
STDBY-PRE-N	AISS	AI4	DTL-020:RFS-SoIPS-120:Cur-	Solenoid 02 current interv		NO Enabled	NO Enabled		i i		DTL-020:RFS-FIM-		RFLPS FI			Bunarred	OK Enabled		o o
† [AIS	DTL-020:RFS-SoIPS-120:Cur-	Solenoid 03 current interv		OK Enabled	OK Enabled				DTL-020:RFS-ADG			tor Global Arc		Duparred	NO Enabled		e e
Filamen Fil-SUP-MI				RFLPS FIM AI6		OK Enabled	OK Enabled		o o							Bypassed	OK Enabled		
FIL-SUP-MI	55	AIG	DTL-020:RFS-FIM-101:AI6-			_					DTL-020:RFS-ADG			tor Global Powe					
FIL-PRE-O	к	A17	DTL-020:RFS-FIM-101:AI7-	RFLPS FIM AI7	1	OK Enabled	OK Enabled		0	DI21	DTL-020:RFS-LLRF	-101:Status-	LLRF stat	us signal	0	Bypassed	OK Enabled		e I
A r		AIS	DTL-020:RFS-FIM-101:AI8-	RFLPS FIM AI8	1	OK Enabled	OK Enabled			_									
Auxiliary	/	AI9	DTL-020:RFS-FIM-101:AI9-	RFLPS FIM AI9		OK Enabled	OK Enabled		•					Special Int					
AUX-SUP-C	ж	AI10	DTL-020:RFS-FIM-101:AI10-	RFLPS FIM AI 10	1	OK Enabled	OK Enabled		•		PV name		Descripti		_	re HVON	pre RFON		ILCK First
AUX AUX-PRE-C	X			Soft Inter						RP1				PowerIlck		- oypassed	OK Enabled		
	~	Soft	DTL-020:RFS-FIM-101:Softlick			OK Bypassed	OK Bypassed		•	RP2	010 02010 0 100			PowerIlck	0	Bypassed	Bypassed		
Amplifie				Legen	d					CD1			Cavity De			Bypassed	CK Bypassed	-	
Amplifier O		ILCI	Input active, real-time interlock = N	ILCK		ск				CD2	DTL-020:RFS-FIM-	101:CD2-	Cavity De	cay Ilck	2	Bypassed	OK Bypassed		• •


Figure : RFLPS OPI state machine and interlock panel.

IOC Structure and Algorithm Description

IOC	Chai	nnel Access	
EPICS Da		EPICS	Sequencer
Device Suj		Module	SNL Algorithm

-Start, Operator stop, Reset and continuous operation buttons. -A power vector **P** is assigned to each pulse length vector **W**. -Starting from P_{min} power is gradually increased to P_{max} by $P_{step-up}$. -Starting from w_{min} pulse length is gradually increased to w_{max} by w_{step} -P_{max} is applied for a number of pulses defined by *Plateau Time* in sec. -FIM, SIM, LLRF state machines and vacuum pressures continuously monitored. -Interlock severity segregation scheme and handling routines. -10us minimum pulse length mode for cavity recovery. -Adjustable recovery times for vacuum and FIM, SIM interlocks.

Critical Fault	Major Fault	Minor Fault -Power is reduced with a predefined
 -RF power to cavity revoked. -Manual Reset requested. -Klystron, RFDS and modulator interlocks. 	 -RF power to cavity revoked. -Algorithm attempts state machine Reset (Hard-reset). -Special interlocks handling. -Interlock rate sensitive. 	step. -Option to reduce pulse length with a predefined step. -Soft vacuum interlock and pressures -Special interlocks handling. -Failure to handle leads to hard reset.

Selected References

[1] R.Garoby et al.-"The European Spallation Source design", Phys. Scr., vol. 93, p.014001, 2018. [2] O. Piquet et al.- "High Power RF Conditioning of the ESS RFQ", in Proc. IPAC'22, Bangkok, Thailand, Jun. 2022, pp. 1189-1191. doi:10.18429/JACoW-IPAC2022-TUPOTK003 [3] D.C. Plostinar et al.-"Status of the Normal Conducting Linac at the European Spallation Source", in Proc. IPAC'22, Bangkok, Thailand, Jun. 2022, pp. 2019-2022. doi:10.18429/JACoW-IPAC2022-WEPOTK001 [4] R. Zeng et al.-"RFQ Performance During RF Conditioning and Beam Commissioning at ESS", in Proc. LINAC'22, Liverpool, UK, Aug.-Sep. 2022, pp. 418-421. doi:10.18429/JACoW-LINAC2022-TUPOPA05 [5] B. Jones et al.-"Hardware Commissioning With Beam at the European Spallation Source: Ion Source to DTL1", in Proc. LINAC'22, Liverpool, UK, Aug.-Sep. 2022, pp. 360-363. doi:10.18429/JACoW-LINAC2022-TUPOJO10 [6] F. Grespan et al.-"High Power RF Conditioning of the ESS DTL1", in Proc. LINAC'22, Liverpool, UK, Aug.- Sep. 2022, pp. 356-359. doi:10.18429/JACoW-LINAC2022-TUPOJO09 [7] F. Grespan et al.-"Status and overview of the activities on ESS DTLs", in Proc. IPAC'23, Venice, Italy, May 2023, pp. 851-854. doi:10.18429/JACoW-IPAC2023-MOPL127 [8] B. Jones and F. Grespan-"Status of the ESS normal conducting linac including beam commissioning to DTL4", in Proc. IPAC'23, Venice, Italy, May 2023, pp. 1725-1728. doi:10.18429/JACoW-IPAC2023-TUPA178 [9] C. Obermair, T. Cartier-Michaud, A. Apollonio, W. Millar, L. Felsberger, L. Fischl, H. Severin Bovbjerg, D. Wollmann, W. Wuensch, N. Catalan-Lasheras, M. Boronat, F. Pernkopf, and G. Burt-"Explainable machine learning for breakdown prediction in high gradient RF cavities"-Phys. Rev. Accel. Beams 25, 104601 – Published 4 October 2022. [10] K. Kümpel, M. Märcz, H. Podlech, A. Rüffer, C. Wagner, and S.R. Wagner, -"Development and Test of a Program for Automatic Conditioning of Room Temperature Cavities", in Proc. IPAC'22, Bangkok, Thailand, Jun. 2022, pp. 2823- 2825. doi:10.18429/JACoW-IPAC2022-THPOTK026 [11] B. Wooley-"High power X-band RF test stand development and high power testing of the CLIC crab cavity", PhD Dissertation, Lancaster, University, Lancaster, UK, 2015. [12] S. Benedetti, M. Cerv, S. Magnoni, J.L. Navarro Quirante, and S.G. Soriano-"Automatic RF Conditioning of S-Band Cavities for Commercial Proton Therapy Linacs", in Proc. LINAC'22, Liverpool, UK, Aug.-Sep. 2022, pp. 154-157. doi:10.18429/JACoW-LINAC2022-MOPOGE06 [13] S.M. Hasan et al,-"EPICS based High Power RF Conditioning Control System for the SNS Accelerator RF Test Facility" in Proc. International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS), Geneva, Switzerland, October 10-14, 2005. [13] A.E. Pollard, D.J. Dunning, and A.J. Gilfellon-"Machine Learning for RF Breakdown Detection at CLARA", in Proc. LINAC'22, Liverpool, UK, Aug.-Sep. 2022, pp. 858-862. doi:10.18429/JACoW-LINAC2022-THPORI16 [14] A. Gaget, A. Gomes, Y. Lussignol-"Control in EPICS for Conditioning Test Stands for ESS"-in of Procs. International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017) : Barcelona, Spain, October 8-13, 2017 DOI: 10.18429/JACoW-ICALEPCS2017- TUPHA205

[15] M. Wang et al.-"RF CM Test Program at ESS TS2", in Proc. IPAC'23, Venice, Italy, May 2023, pp. 3010-3013. doi:10.18429/JACoW-IPAC2023-WEPA151

Conclusions

-RFQ and DTL Tanks Conditioning process accelerated with the implementation of the conditioning IOC.

-Reduction of operator engagement and improved efficiency.

-Challenging to develop a standard universal conditioning algorithm as each cavity exhibits different behavior.

-Flexibility, Maintenability and version control are essential to adapt to day-to-day challenges.

-Studies and investigation on going to further improve the process, act preemptively and address occurent issues.