
Our experience has shown that infrastructure suppliers typically have very little knowledge of
EPICS. These suppliers, also typically implement their control systems in proprietary technology
from PLC manufacturers.
 With all the major PLC suppliers[3–5] it is possible to install an OPC UA server within the PLC
and export and serve these PLC variables over OPC UA. With our investigation, we found that it
was possible to develop open-source OPC UA clients using Python[8, 9] as an alternative to the
existing EPICS device support module for OPC UA[6, 7].
 With this in mind, we used our experience in developing containerized EPICS systems in the
React-Automation-Studio project[10] and present a system which is containerized with
Docker[11], deployable as microservices and implemented in Python using the Open-Sourced
Python SoftIOC project[12] and OPCUA-asyncio[9] modules.

Open Platform Communications United Architecture (OPC UA) is a service-orientated
communication architecture that supports platform-independent, data exchange between
embedded micro-controllers, PLCs or PCs and cloud-based infrastructure.
 This makes OPC UA ideal for developing manufacturer independent communication to
vendor specific PLCs, for example. With this in mind, we present an OPC UA to EPICS bridge that
has been containerized with Docker to provide a micro-service for communicating between
EPICS and OPC UA variables.

Abstract

Motivation

record (bo , "OPCUA−Python:Bo ")
{

field (DTYP, " OPCUA_Boolean ")
field (OUT, " ns =4; s=GVL.BoBool ")
field (DESC, "BO")
field (ZNAM, " Off ")
field (ONAM, "On ")

}
record (ao , "OPCUA−Python:AoUInt16 ")
{

field (DTYP, " OPCUA_UInt16 ")
field (OUT, " ns =4; s=GVL. AoUInt16 ")
field (DESC, "Ao UInt16 ")
field (HOPR, " 65535 ")
field (LOPR, " 0 ")
field (PREC, " 0 ")

}

[1] OPC UA, https://opcfoundation.org/about/opctechnologies/opc-ua/.
[2] EPICS, https://epics.anl.gov/.
[3] Siemens, SIMATIC controller - Industrial Automation
Systems,
https://www.siemens.com/global/en/products/automation/systems/industrial/plc.html.
[4] Beckhoff, Automation | Open, PC-based control technology| Beckhoff,
https://www.beckhoff.com/en-za/products/automation/.
[5] Omron, Programmable Logic Controllers (PLC) |
OMRON,https://industrial.omron.co.za/en/products/programmable-logic-controllers.
[6] R. Lange, R. Elliot, B. Kuner, K. Vestin, C. Winkler, D. Zimoch, et al., “Integrating OPC UA
Devices in EPICS,” in 18th International Conference on Accelerator and Large Experimental
Physics Control Systems, 2021, MOPV026.
[7] R. Lange, epics-modules/opcua: EPICS Device Support for OPC UA,
https://github.com/epics-modules/opcua.
[8] Python, https://www.python.org/.
[9] Opcua-Asyncio, https://github.com/FreeOpcUa/opcuaasyncio.

W. D. Duckitt. Stellenbosch University, Stellenbosch, South Africa
J. K. Abraham. iThemba LABS, Cape Town, South Africa

OPC UA EPICS BRIDGE

OPCUA Data
Type

PLC Data
Type

New OPCUA Bridge
EPICS DTYP

Compatible EPICS Records
AI AO BI BO STRINGIN STRINGOUT

Boolean BOOL OPCUA_Boolean Y Y
SByte SINT OPCUA_SByte Y Y
Byte USINT OPCUA_Byte Y Y
Int16 INT OPCUA_Int16 Y Y
Int32 DINT OPCUA_Int32 Y Y
String STRING OPCUA_String Y Y
Float REAL OPCUA_Float Y Y

Double LREAL OPCUA_Double Y Y
UInt16 UINT OPCUA_UInt16 Y Y
UInt32 UDINT OPCUA_UInt32 Y Y
Int64 LINT OPCUA_UInt64 Y Y

UInt64 ULINT OPCUA_UInt64 Y Y
DateTime DT OPCUA_DateTime Y

version: '3.2'
services:
 opcuapepicsbridge:
 build:
 context: ./
 dockerfile: docker/opcuaEpicsBridge/Dockerfile
 restart: always
 network_mode: host
 tty: true
 stdin_open: true
 environment:
 - name=OpcuaTest1
 - url=opc.tcp://192.168.56.104:4840
 - subscriptionRate=100
 - secure=False
 volumes:
 - ./certificates:/certificates/
 - ./db/testBeckhoff.db:/bridge/bridge.db

[10] W. Duckitt and J. Abraham, “React Automation Studio: A New Face to Control
Large Scientific Equipment,” in Proc.
Cyclotrons’19, Cape Town, South Africa, 2020, pp. 285–288. doi:10.18429/JACoW-
Cyclotrons2019-THA03
[11] Docker, https://www.docker.com/.
[12] pythonSoftIOC, https://dls-controls.github.io/pythonSoftIOC/master/index.html.
[13] Git, https://git-scm.com/.
[14] dbtoolspy: Python Module to Read EPICS Database,
https://github.com/paulscherrerinstitute/dbtoolspy.
[15] Docker Compose, https://docs.docker.com/compose/
[16] Kubernetes, https://kubernetes.io/
[17] J. A. W. Duckitt, React-Automation-Studio/OPCUA-EPICSBRIDGE,
https://github.com/React-Automation-Studio/OPCUA-EPICS-BRIDGE.
[18] TwinCAT 3 OPC UA TF6100,
https://www.beckhoff.com/enza/products/automation/twincat/tfxxxx-twincat-3-
functions/tf6xxx-connectivity/tf6100.html.
[19] React-Automation-Studio · Discussions · GitHub, https://github.com/orgs/React-
Automation-Studio/discussions.

An OPC UA to EPICS bridge that has been containerized with Docker to provide a microservice
for communicating between EPICS and OPC UA variables has been designed. The system
supports all the standard OPC UA data types. We urge the EPICS community to test and evaluate
the system and to provide feedback via the React-Automation-Studio discussion group[19].

Implementation Diagram

RAS Test User Interface

State Diagram Example EPICS DB

Example Docker Compose Config

OPC UA, PLC and EPICS Compatibility

REFERENCES

Conclusion

	Slide Number 1

