
RESEARCH POSTER PRESENTATION DESIGN © 2022

www.PosterPresentations.com

A robust monitor and control front-end application is a crucial feature for large 

and scalable radio telescope infrastructures such LOFAR and SKA, whereas the 

control system is required to manage numerous attribute values at a high 

update rate. Two state-of-the-art web applications such Grafana® and Taranta

are taken into account, developing a comparative analysis between the two 

software suites. Such a choice is motivated mostly because of their widespread 

use together with the TANGO Controls Framework.

M&C Front-End Web Application: a key feature

Objectives

COMPARATIVE TABLE RESULTS

ACKNOWLEDGEMENTS

Many thanks to the INAF staff, the ASTRON staff, the SKAO developers 

community and the TANGO community for their support, great work and ideas.

A typical use-case is analyzed, whereas an interactive dashboard is built to 

monitor and control a hardware device. Then, we set up some comparable 

metrics to evaluate the pros and cons of both platforms, regarding the 

technical and operational requirements, fault tolerances, developers and 

operators efforts, and so on. The main objective is to offer the stakeholders a 

basis for future choices.

Stefano di Frischia, Mattero Canzari (INAF-OAAb, Teramo, Italy)

Valentina Alberti (INAF-OAT, Trieste, Italy)

Athos Georgiou (CGI Scotland, Edinburgh, UK)

Hélder Ribeiro (Universidade do Porto, Porto, Portugal)

FRONT-END MONITOR AND CONTROL WEB APPLICATION FOR

LARGE TELESCOPE INFRASTRUCTURES: A COMPARATIVE ANALYSIS

It has been chosen the following use case which can be representative of a 

real use case in the aforementioned projects like LOFAR or SKA: monitor a 

dashboard that shows the image of a Printed Circuit Board (PCB) which 

represents a real hardware device of the observing station. The main attributes 

of the device (and therefore their corresponding values) are placed upon the 

image with the possibility by the operator to read and/or modify them.

Ideally, the steps are the following:

• create a new dashboard inside the chosen front-end framework;

• place an image of the selected PCB as background image of the 

dashboard;

• retrieve from the data source the list of the attributes which belong to the 

chosen device;

• place each pair label-values upon the image, selecting the right format, 

graphic, unity, etc.;

• check if the dashboard is updated correctly after the device values 

updating;

• modify a read/write attribute if possible directly from the GUI.

Use Case: create and monitor a dashboard

Fig.2: snapshot of Taranta create dashboard window

Fig.1: snapshot of Grafana ® edit panel window

GRAFANA® TARANTA
Repository https://github.com/grafana/grafana https://gitlab.com/tango-

controls/web/taranta-suite

Version 10.1.0 2.4.0

License AGPL-3.0-only LGPL 3.0

Target platforms All Windows not supported

Main frontend 

programming 

language

Typescript React

Contributors Around 2100 Around 40

Installation Pretty straightforward It may require to tweak some 

parameters in Docker 

Compose file

Other software needed

for present use case 

Prometheus, Prometheus-node Exporter TangoGQL, MongoDB and 

other accessory tools are 

automatically installed

TANGO Controls 

support

Through Prometheus, or directly inject

TangoDB as data source (f.e. MariaDB). 

Needs proper configuration.

Tailored on TangoDB, it 

needs only its host address to 

connect

Data Sources Supports a multitude of data sources like 

Prometheus, Loki, Elasticsearch, InfluxDB, 

Postgres and many more.

Tailored on TangoDB

Developer preparation

for dashboard creation

It may require to modify JSON files as 

well as write queries in the data source 

format

Minimum

End user preparation

for dashboard 

interaction

Minimum Minimum

On-line Support Slack channels, community forums and 

dedicated Grafana Labs contact 

support

Developer community 

contacts and slack channesl

Documentation Official docs along with tutorials, 

webinars, videos and blogs

Repository and Tango 

community documentation

Tool Customization Lots of extensions and plugins

developed by the community

No plugins outside the official

suite

GUI usability Highest. UX/UI dedicated development High. Simple and 

straightforward 
Mobile responsiveness High. Dedicated development Basic

Dashboard visual 

appeal

High. Many customizable graphic 

options.

Medium. It focuses on 

readability rather than 

graphic embellishment

Data visualization tools A broad choice of widgets that should

meet all data format needs. Less

customizable from the point of view of 

the Tango device monitor and control.

A minor number of widgets 

but each one of them 

tailored on a specific Tango 

Controls feature

Dashboard 

customization 

High, but it required more effort to 

adapt it to the present use case

High, it required less effort 

since it met easily the 

present use case
Alerting Grafana Alerting System Taranta Alerting features

Authentication and 

Authorization

Grafana Auth or other auth providers Taranta Auth package

TANGO command 

support

Not present. Not allowed through

Prometheus

Present. Dedicated widget

Dashboard minimum 

refresh rate

Between 1s and 5s Handled by websocket 

through an asynchronous 

event management
Suitability for business 

companies

Suitable both for small and large 

companies

Suitable for large companies 

which adopt Tango Controls

framework

Scalability Dedicated Grafana Cloud platform

suitable for different requirements

Minikube and Docker as

preferred deployment tools

https://github.com/grafana/grafana
https://gitlab.com/tango-controls/web/taranta-suite

