
Extending Phoebus Data 

Browser to alternative data 

sources

Mihnea Romanovschi1, Ivan Finch1, Gareth Howells1

1. ISIS Neutron and Muon Source, Harwell Campus, Oxfordshire, OX11 0QX, UK

Server Architecture

The Phoebus user interface to EPICS is an integral part of the upgraded control 

system for the ISIS Neutron and Muon Source accelerators and targets. Phoebus can 

use the EPICS Archiver Appliance, which has been deployed as part of the transition 

to EPICS, to display the history of PVs. However, ISIS data historically has and 

continues to be stored in the InfluxDB time series database. To enable access to this 

data, a Python application to interface between Phoebus and other databases has 

been developed. Our implementation utilises Quart, an asynchronous web 

framework, to allow multiple simultaneous data requests. Google Protocol Buffer 

(Protobuf), natively supported by Phoebus, is used for communication between 

Phoebus and the database. By employing subclassing, our system can in principle 

adapt to different databases, allowing flexibility and extensibility. Our open-source 

approach enhances Phoebus's capabilities, enabling the community to integrate it 

within a wider range of applications.

The components of the entire system can be divided roughly into four main 

components following a Model-View-Controller approach in design:

• Phoebus Application: it represents the view side of the system; it displays the 

control screens and the information from our archiving database. It also performs 

requests to the controller regarding what information is to be displayed.

• Quart Server: an asynchronous server that acts as the controller. It unpacks the 

HTTP requests and delivers data from the model in an asynchronous manner. This 

approach minimizes the latency between processing information from a database 

and presenting it to Phoebus, ensuring optimal performance.

• Model: Performs the data conversion from the format that the databases API 

responds into the format that Phoebus expects, in this case a Protobuf binary.

• Database: We use InfluxDB for data collection and CouchDB for metadata 

lookup. They may also perform statistical analyses as needed.

Introduction

We plan to contribute to the open-source community of both 

Phoebus and InfluxDB through this project. We have provided 

an example on how to change the data source used by the 

Data Browser without the need to modify the Phoebus source 

code.

Conclusion

Find out more 

about ISIS

Future development is planned to focus on three areas:

1. Modularity: Currently the application only implements support for one database. 

We plan to make it easier to change between databases and allow for multiple 

data sources to be connected to allow for a smooth transition between systems, 

for example from the EPICS Archiver Appliance to InfluxDB.

2. Alarm Handling: The hope is to move to an ElasticSearch Database to store 

and serve alarms to different systems that request it, including the wrapper.

3. Testing: The application requires more testing to ensure that the EPICS Archiver 

Appliance API is fully replicated, for example. At present, the ability to efficiently 

handle simultaneous calls for PV statistics to optimize display is limited and not 

fully supported.

Further Work

Figure 1: High level overview of architecture

The server is an application separate from Phoebus and the databases that it 

communicates with. It runs in a Docker environment using the Green Unicorn HTTP 

Server, a platform capable of handling multithreaded operations, although this 

multithreaded functionality has yet to be used by the current application. 

Our current workflow for introducing a new Process Variable (PV) is as follows:

1. Define metadata parameters, such as name, type, precision and other elements 

for the display. To track this data, we use CouchDB.

2. Add it to our archiving tool, EPICS Archiver Appliance or InfluxDB.

Figure 2 illustrates the internal operation of the application. It seamlessly handles 

incoming requests from Phoebus, mimicking the Epics Archiver Appliance API. These 

requests are then transformed into the appropriate API calls for the chosen database. 

When metadata retrieval is required, the server connects to CouchDB to retrieve the 

information, converting it into the Protobuf protocol. Subsequently, this metadata is 

incorporated as a header in the response received from InfluxDB.

Figure 3: Breakdown of the Protobuf binary.

Figure 2: Internals of how the server operates.

By default, the EPICS Archiver Appliance begins logging each PV using incremental 

timestamps based on the first observation of the PV. If you wish to access the data 

then an appropriate conversion from the queried time to the required incremental 

timestamp must be performed. In the case of InfluxDB this would require adding a 

new field to your data points. This can be avoided by setting the year to 1970, the 

start of the UNIX Epoch.

Figure 3 breaks down the Protobuf binary that the Quart server sends to Phoebus.

The components are as follows:

• Header (Blue): Represents the metadata, information about the PV/Channel that 

we request. The type is sent in both the header and body of the response. The 

header is separated from the body by a new line. 

• Body (Green and Red): The body contains every point we sample from the 

archiver separated by new lines. It also contains the status and the severity of any 

alarms that have been registered at a given time. It can be either a field from Influx 

or a completely different data source, for example an ElasticSearch server.

TUMBCMO08


	Slide 1

