
@ESSneutron

Dynamic Control Room 
Interfaces for Complex Particle 

Accelerator Systems
B. E. Bolling, G. Fedel, M. Munoz, D. Nordt

TUMBCMO07

The European Spallation Source (ESS) is a research facility under construction aiming to be
the world's most powerful pulsed neutron source. It is powered by a complex particle
accelerator designed to provide a 2.86 ms long proton pulse at 2 GeV with a repetition rate
of 14 Hz. Commissioning of the first part of the accelerator has begun and the requirements
on the control system interfaces varies greatly as progress is made and new systems are
added. In this paper, three such applications are discussed in separate sections.

A Navigator Operator Interface (OPI) was developed for the control room interfaces aimed
towards giving operators and users a clear and structured way towards quickly finding the
needed interface(s) they need. The construction of this interface is made automatically via a
Python-based application and is built on applications in any directory structure both with
and without developer interference (fully and semi-automatic methods).

The second interface is the Operations Accelerator Synoptic OPI, which uses a set of input
lattices and system interface templates to construct configurable synoptic view of the
systems in various sections and a controller panel for any selected system.

Lastly, there is a configurable Radiofrequency (RF) Cavities Orchestration OPI for
Operations, allowing in-situ modification of the interface depending on which systems and
components are selected.

Fig. 1. A high-level flowchart depicting the script constructing
the Accelerator Synoptics User Interface. Fig. 2. A high-level flowchart depicting the script constructing the Operator

Interface Navigator User Interface.

Fig. 3. The OPIs Navigator OPI currently showing the
Overview Interface for the Radiofrequency components of
the NCL.

Fig. 4. The Accelerator Synoptics Interface showing the high-level overview of the Linac
MEBT section.

Fig. 5A. The RF Orchestration Interface with all (except modulator) subsystems collapsed.

OPIs Navigator OPI (prototype)
The openness of Phoebus introduces the issue that having a
large number of user interfaces scattered across a large
amount of directories, with many cases having support files
that cannot be opened as standalone applications, the user
interfaces needed become difficult/time-consuming to be
found. The Operator Interfaces (OPIs) Navigator OPI is a
prototype interface aimed at solving the issue by
dynamically constructing an OPI to enable users to navigate
amongst relevant user interfaces to save time and effort.

Methodology
A Python script renders the Navigator OPI which loops
through a given set of directories using a recursive strategy
for any subdirectory and with a set of filters applied, such as
methods for identifying support files such that they can be
omitted. The script then launches a PyQt5-based user
interface with a table of OPIs identified such that the
developer may select which OPIs are to be included in the
Navigator OPI, which may be referred to as accepted OPIs. A
flowchart of the construction method can be seen in Fig. 2

Results
The end result is a Python script dynamically constructing
the OPIs Navigator OPI which enables fast and efficient
navigation between accepted OPIs, with a screenshot
attached in Fig. 3 in which the Navigator OPI shows the RF
Overview OPI. There are further discussions ongoing on how
to implement the Navigator OPI as a Phoebus element
directly - hence it being referred to as a prototype - since it
is now clearer what is needed from an Operations
perspective with regards to an OPI Navigator.

Accelerator Synoptics OPI
The Accelerator Synoptic OPI is designed to provide a general overview of the state of a
linear accelerator as a whole combined with ways to quickly interact with each accelerator
component. As with the Navigator OPI, it is constructed by activating a Python script with a
set of embedded display templates, blockicons (pushbuttons combined with visual
elements), filter setups, and one or more accelerator lattice files. The script sorts all
components in terms of position along the accelerator, and builds the synoptic application
with interactive elements and their associated embedded displays.

RF Orchestration OPI
The configurable RF Orchestration interface for Operations allows in-situ
modification of the setup depending on which systems and components
are to be controlled for different purposes. Using local signals, users can
select which accelerator components (such as Medium Energy Beam
Transport (MEBT) Buncher 1) to show and which subsystems (Modulator,
Low-Level RF, etc.) to show detailed information about and controllers and
for which to show only the essential information.

Methodology
The OPI consists of submodules with different inputs for their naming and
can hence be reused for other similar systems. When combined, they span
e.g. the RFQ and the DTL RF systems (2-klystrons-per-modulator system),
meaning that a relatively small amount of work is needed to create the
OPIs for different system species - such as solid state amplifier bunchers
having no modulators or 4-klystrons-per-modulator systems.

Results
A fully expanded and an almost fully collapsed view (in which only the
Modulator module is expanded) is shown in Fig. 5 (parts B and A,
respectively. As can be seen, the collapsed view offers the user a quick
overview of the system states via colour codes based on the state relative
to its expected state during normal operation, enabling the user to quickly
gain an understanding of the state of the systems as well as means to
quickly interact with systems or launch OPIs with more advanced (less
interacted with) settings:

§ Red: System state is not OK (e.g. off or in fault).

§ Yellow: System state might need attention, as it is not in the state it
should be for normal operation.

§ Green: System state is OK for normal operation.

Methodology
A Python script creates one embedded display
per accepted element and filter combination,
with an accepted element having a valid
blockicon (a symbol combined with a push-
button) associated with it as well as a name of
the physical equipment in the input lattice file.
For each synoptic combination, separate files
are constructed and displayed as embedded
screens per section (or combined section).

By using templates and different identifiers,
the developer can easily modify and add or
remove different components to information
displays and the embedded displays (including
controllers, readbacks, history plots, etc.). A
simplified flowchart depicting the construction
process is shown in Fig. 1.

Results
The end result is an Accelerator Synoptic
OPI which is easy to use and enables
users to quickly navigate through the
different components as well as have an
understanding of the overall state of the
machine. Sectional overviews further
adds to the completeness of the
application, as can be seen in Fig. 4.

Furthermore, a filter function can be set
up to show or hide different accelerator
component species, interacting
with/showing live data from any
component (presuming that it had a
template file enabling this) as well as
information regarding it (with e.g. lattice
data and a picture of it).

Fig. 5B. The RF Orchestration Interface with all subsystems expanded.

Conclusion
A set of OPIs were created to give Operators a quick overview and simpler means to control
a very complex machine that currently is in installation phase, meaning that the OPIs have
to be quickly adaptable and dynamic to facilitate operational flexibility. For this purpose, the
complex OPIs used for Navigating between other OPIs (Navigator OPI) and between
different accelerator components (Accelerator Synoptic OPI) are successfully generated
using Python scripts when a change is made to the accelerator lattice, a request to include
more system species is made, or newly developed and deployed OPIs that Operators added
are to be included. Therefore, the script-generated OPIs are fully scalable to the full
accelerator whilst the RF Orchestration OPI needs slight changes to some embedded system
components in order to support e.g. 4-klystron-per-modulator and Spokes RF systems.

References
R. Garoby et al., "The European Spallation Source Design", Physica Scripta, vol. 93 (12),
2018, IOP Publishing, doi:10.1088/1402-4896/aaecea.

K. Shroff et al., "New JAVA Frameworks for Builing Next Generation EPICS Applications", in
Proc. 17th Int. Conf. on Acc. and Large Exp. Physics Control Systems (ICALEPCS’19), New
York, NY, USA, 2019, paper WESH1002, pp. 1497-1500, doi:10.18429/JACoW-
ICALEPCS2019-WESH1002.

D. Nordt, "ESS Rules for the Visual Design of EPICS Operator Interfaces", European
Spallation Source, Lund, Sweden, 2023, Internal European Spallation Source report, ESS-
4752055, unpublished.

G. Van Rossum, Fred L. Drake, "Python 3 Reference Manual", Scotts Valley, CA, USA, 2009,
CreateSpace, ISBN:978-1-4414-1269-0.

Acknowledgements
The authors acknowledge the great support and collaboration across
multiple divisions at ESS, including the Operations Division and the
Integrated Control System Division, and to all colleagues reviewing and
providing feedback both on the OPIs and on this paper itself.


