
https://github.com/paulscherrerinstitute/cam_server

CamServer: Stream Processing @ SwissFEL and SLS 2.0 
A. Gobbo1, A. Babic1

1 Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland

Deployment

Architecture

CamServer

Camera Server Pipeline Server

BSREAD Camera

EPICS Camera

Data
Buffer

Screen
Panel On-demand Pipeline

Permanent Pipeline

REST APIREST API• Configuration.
• Control.
• Monitoring.
• Metrics.

PShell

CamServer Manager App Monitoring web UI

• Pipeline and Camera config (json).
• Image Background files (npy).
• Custom processing scripts (py).
• Permanent & fixed instances (json).

Database
(GIT)

• Adapt different sources.
• Single camera connection.
• Pre-processing.

• Data processing.
• Stream alignment.
• Output to stream or file.

ZMQ source.

4. Request Camera1. Request Name or Config
7. Setup5. Return URL2. (Create &) Return URL

6. Connect to URL3. Connect to URL
8. Send Data

9. Send Data (ZMQ)Pipeline Instance Camera Instance10. Send Data (ZMQ)

Typically PUB

Pipelines can be
cascaded.

2. Request Camera
3. Return URL

5. Setup8. Connect to URL (fixed port)
4. Connect

6. Send Data9. Send Data (ZMQ)

PUSH to DataBuffer 7. Send Data (ZMQ)

1.Start

Python
Client

Can forward raw images
to the DataBuffer

CamServer Cluster

server-01
server-02

server-03
server-04

server-05
server-06

server-07

10. Send data

1. Request pipeline

3. Return URL

Worker selection based on:
• Configuration.
• Server load.
• Prefer running related Camera and

Pipelines instances in the same server.

Server Nodes

Each service runs in a Docker container, or in an
Ansible-automated individual Python environment.

Each server is a node for both PipelineServer and
CameraServer clusters.

A cluster is composed by:
• 1 server running the Manager service (proxy).
• Multiple servers running the Worker service.

Servers can be configured to be generic or
beamline specific (isolating traffic & processing).

ScreenPanel: standard camera viewer

PipelineManager
server-01:8889

CameraManager
server-01:8888

Camera

Each pipeline and camera instance runs
in an independent process for

scalability and isolation.

server-08

9. Setup

PipelineWorker
server-xx:8881

CameraWorker
server-xx:8880

4. Connect to the URL

2. Create Instance 6. Create Instance

5.
 R

eq
ue

st
 C

am
er

a
7.

 R
et

ur
n

UR
L

8. Connect

11. Send Image 10. Send Image

A pipeline can be parallelised configuring:
• Multi-threading: I/O bound, Numba.
• Multi-processing: CPU bound, small data.
• Fan-out / fan-in: CPU bound.

Pipeline Instance Camera Instance

CamServer is a Python package for data stream processing developed at Paul Scherrer Institute (PSI). It is a key component of SwissFEL's data
acquisition, where it is deployed on a cluster of servers and used for displaying and processing images from all cameras. It scales linearly with the
number of servers and is capable of handling multiple high-resolution cameras at 100Hz, as well as a variety of data types and sources. The processing
unit, called a pipeline, runs in a private process that can be either permanent or spawned on demand. Pipelines consume and produce ZMQ streams,
but input data can be arbitrary using an adapter layer (e.g. EPICS). A proxy server handles requests and creates pipelines on the cluster's worker nodes
according to rules. Some processing scripts are available out of the box (e.g. calculation of standard beam metrics) but users can upload custom ones.
The system is managed via its REST API, using a client library or a GUI application. CamServer's output data streams are consumed by a variety of
client types such as data storage, image visualisation, monitoring and DAQ applications.

Abstract

• Currently there are 480 configured processing pipelines and 200 cameras.

• More than 50 permanent pipelines continuously send data to the Data Buffer (temporary storage for DAQ).

• On average more than 10 on-demand pipelines run at a time: the standard SwissFEL camera viewer application is a CamSever client.

• The cluster is composed by 13 servers Intel(R) Xeon(R) Gold 6342 @ 2.80GHz each having 48 cores, 96 threads and 25Gb network adapters.

• At 100Hz each server is limited by network bandwidth to 2 high-resolution cameras (2560x2160) but supports many (>>10) low-resolution cameras.

Figures (SwissFEL)

