
Poster Print Size:
This poster template is
36” high by 48” wide. It
can be used to print any
poster with a 3:4 aspect
ratio.

Placeholders:
The various elements
included in this poster
are ones we often see in
medical, research, and
scientific posters. Feel
free to edit, move, add,
and delete items, or
change the layout to suit
your needs. Always
check with your
conference organizer for
specific requirements.

Image Quality:
You can place digital
photos or logo art in
your poster file by
selecting the Insert,
Picture command, or by
using standard copy &
paste. For best results,
all graphic elements
should be at least
150-200 pixels per inch
in their final printed
size. For instance, a
1600 x 1200 pixel photo
will usually look fine up
to 8“-10” wide on your
printed poster.

To preview the print
quality of images, select
a magnification of 100%
when previewing your
poster. This will give you
a good idea of what it
will look like in print. If
you are laying out a
large poster and using
half-scale dimensions,
be sure to preview your
graphics at 200% to see
them at their final
printed size.

Please note that
graphics from websites
(such as the logo on
your hospital's or
university's home page)
will only be 72dpi and
not suitable for printing.

[This sidebar area does not print.]

Change Color
Theme:
This template is
designed to use the
built-in color themes in
the newer versions of
PowerPoint.

To change the color
theme, select the
Design tab, then select
the Colors drop-down
list.

The default color theme
for this template is
“Office”, so you can
always return to that
after trying some of the
alternatives.

Printing Your
Poster:
Once your poster file is
ready, visit
www.genigraphics.com
to order a high-quality,
affordable poster print.
Every order receives a
free design review and
we can deliver as fast as
next business day
within the US and
Canada.

Genigraphics® has been
producing output from
PowerPoint® longer
than anyone in the
industry; dating back to
when we helped
Microsoft® design the
PowerPoint® software.

US and Canada:
1-800-790-4001

Email:
info@genigraphics.com

[This sidebar area does not
print.]

The Quest for Data

From Problems to Progress

The Square Kilometer Array
(SKA) project is an
international effort to build
two radio interferometers in
South Africa and Australia
to form one Observatory
monitored and controlled
from the global
headquarters based in the
United Kingdom at Jodrell
Bank.

The Monitoring, Control
and Calibration System
(MCCS) is the "front-end"
management software for
the Low telescope which
provides monitoring and
control capabilities as well
as implementing calibration
processes and providing
complex diagnostics
support.

Once completed the Low
telescope will boast over
130,000 individual
log-periodic antennas and
so the scale of the data
generated will be huge. It is
estimated that an average
of 8 terabits per second of
data will be transferred
from the SKA telescopes in
both countries to Central
Processing Facilities (CPFs)
located at the telescope
sites.

In order to keep pace with
this magnitude of data
production an equally
impressive data acquisition
(DAQ) system is required.
This poster outlines the
challenges encountered and
solutions adopted whilst
incorporating a bespoke
DAQ library within the SKA's
Kubernetes-Tango
ecosystem in the MCCS
subsystem in order to allow
high speed data capture
whilst maintaining a
consistent deployment
experience.

The SKA deployment toolchain
encompasses a comprehensive suite of
technologies:
● Docker
● Kubernetes/Minikube
● Helm
● Make

The challenge was to integrate third party
software and its dependencies with this
ecosystem in a Tango Controls based
framework.

At this stage of development our DAQ
device had the capability to capture data
in all modes with the exception of
correlated data which had additional
dependencies including an NVIDIA GPU,
CUDA and xGPU support.

The initial phase in integrating the DAQ
software with MCCS involved the creation
of a containerized Tango device server to
drive the DAQ software.

To achieve high-rate data logging the DAQ
software requires additional capabilities
which includes raw network interface
access among others. To enable these
essential capabilities in our OCI image we
can utilize the `RUN setcap <capabilities>`
within our Dockerfile.

Integration Of Bespoke DAQ Software With Tango
Controls In The SKAO Software Framework

A. J. Clemens, Observatory Sciences Ltd., Cambridge, U.K.

Introduction

The Correlator Saga

ABSTRACT

CONTACT

Figure 2. Final Evolution
of DAQ Architecture

A. J. Clemens
Observatory Sciences Ltd.
Email:
ajc@observatorysciences.co.uk
Website:
www.observatorysciences.co.uk

Figure 1. First Evolution
of DAQ Architecture

SOLUTION: We split DAQ into a frontend
and a backend connected via gRPC
and a Kubernetes service. This
allowed deployment of the frontend
with SKAO tools and the backend via
Docker for raw network interface
access. (See Figure 1)

CHALLENGE: Despite having a data
routing service in place receiving data
proved challenging. This persisted
because Minikube lacks the ability to
grant raw network interface access
resulting in packet loss at the cluster
boundary.

SOLUTION: We refined the Helm
templates to generate a load balancer
service for each receiver, empowering
it to efficiently route traffic to the
appropriate port of its respective
receiver’s pod.

CHALLENGE: Despite specifying `EXPOSE
<port>/udp` in the Dockerfile our
device server was not receiving data
as anticipated. Surprisingly the
command does not directly affect
network functionality.

SOLUTION: Inform Helm about the
capabilities the pod requires by
appending them to the
`securityContext` field in the values
file.

CHALLENGE: Configuring capabilities
solely in the Dockerfile is insufficient
when deploying to Kubernetes. Whilst
the container itself receives the
necessary capabilities, the pod does
not inherit them.

SOLUTION: To selectively apply
capabilities only where necessary, we
opted to isolate this particular device
server within a dedicated DAQ
repository, complete with its own OCI
image.

CHALLENGE: Running the device server
with correct permissions introduced
an unintended issue - unnecessary
capabilities were added to all team
device servers.

SOLUTION: A Container Network
Interface (CNI) meta-plugin, MULTUS,
enabled us to load our primary CNI,
Calico, and grant pods access to an
additional network interface thus
facilitating the capture of data.

CHALLENGE: When transitioning from
successfully capturing simulated data
in Minikube to hardware sites with a
complete Kubernetes setup we
continued to face network interface
access challenges.

SOLUTION: To decouple these
requirements, we split the DAQ
device further. We eliminated the
Tango dependency by moving the
Tango device server out of the DAQ
repository allowing use of an official
CUDA base image.

CHALLENGE: Creating a compatible OCI
image for both Tango Controls and
CUDA proved highly challenging.
Complex compatibility matrices and
version disparities hindered
development, highlighting the need
for an alternative approach.

SOLUTION: Register the GPU as a cluster
resource and request via Helm’s
`resources::limits::nvidia.com/gpus`
key and ensure the host has the right
driver version, NVIDIA Container
Toolkit and Docker daemon using the
NVIDIA Container Runtime.

CHALLENGE: Upon deployment the DAQ
server initially struggled to
communicate with the host’s GPU
due partly to deployment
configuration and partly to the overall
configuration of the cluster.

