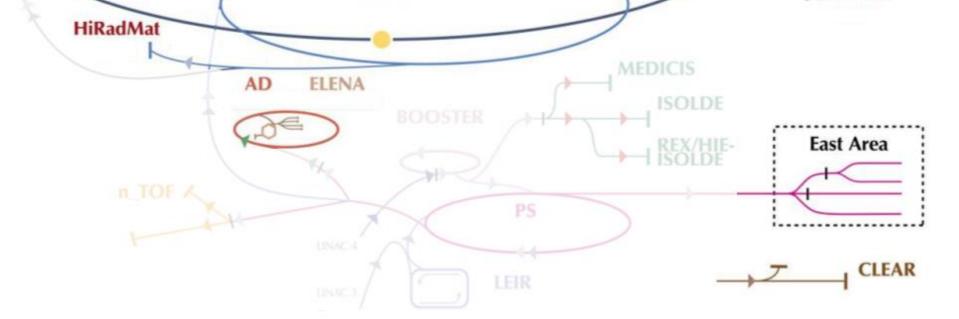
A generic real-time software in C++ for digital camera-based acquisition systems at CERN


A. Topaloudis*, E. Bravin, S. Burger, S. Jackson, S. Mazzoni, E. Poimenidou, E. Senes Beam Instrumentation, CERN

Abstract

Until recently, most of CERN's beam visualisation systems have been based on increasingly obsolescent analogue cameras. Hence, there is an on-going campaign to replace old or install new digital equivalents. There are many challenges associated with providing a homogenised solution for the data acquisition of the various visualisation systems in an accelerator complex as diverse as CERN's. However, a generic real-time software in C++ has been developed and already installed in several locations to control such systems. This paper describes the software and the additional tools that have also been developed to exploit the acquisition systems, including a Graphical User Interface (GUI) in Java/Swing and web-based fixed displays. Furthermore, it analyses the specific challenges of each use-case and the chosen solutions that resolve issues including any subsequent performance limitations.

Challenges Introduction Analogue cameras are The main challenges in providing a **homogenised acquisition system** is the **variety in the** generally considered more hardware installations and in the requirements of each installation. LHC radiation tolerant than digital cameras. However, Trigger CPU **Power Control** Requirements Location

SPS

Digital cameras installations at CERN so far

Digital cameras on the other hand have **better** image quality and require less additional electronics (e.g. ADC, timing integration, etc.)

they continue to become

outdated.

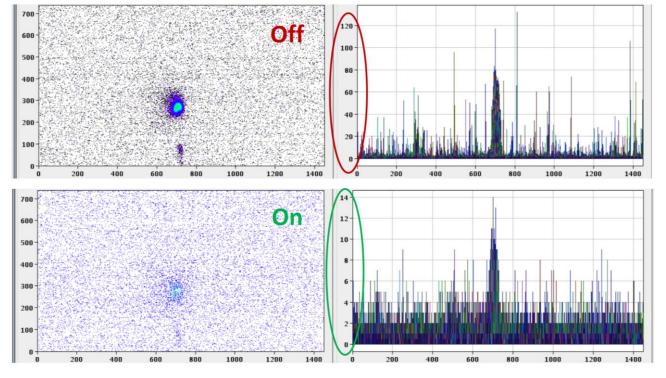
There are already **several installations** at CERN featuring digital

cameras visualisation systems with various requirements.

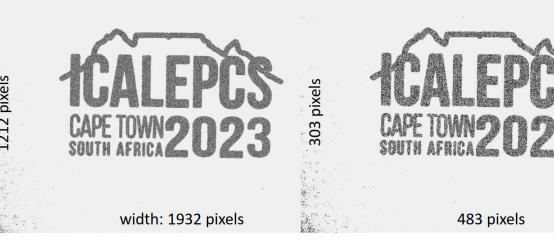
AWAKE

Location	# cameras	Frame rate (Hz)	Frame size (pixels)	Bandwidth (MB/s)
SBDS	1	35	1450x740	56
AWAKE	27	10	1936x1216	945
	10	N/A		N/A
CLEAR	23	1	2048x1536	108
AD/ELENA	4	N/A	170x170 / 1265x1060	N/A
HiRadMat	6	N/A	440x815	N/A
LHC	1	1	1936x1216	3,5
IRRAD	1	N/A	1028x664	N/A

SBDS	Internal	VME	BTVI (DC)	Saturation detection Constantly online Continuous light integration
AWAKE	External	Super Micro	RUCKUS (PoE)	Demanding throughput Auto recovery from SEUs Timing integration in SW Fine synchronization Sanity check maintaining the full resolution
CLEAR	External	VME/ Industrial PC	RUCKUS (PoE)	Multi-camera installation
AD/ELENA	External / Manual	VME	GUDE (DC) / RUCKUS (PoE)	Synchronised manual trigger
HiRadMat	External	VME	RUCKUS	Standard operation (Profiling)
LHC	Internal	VME	N/A	Standard operation
IRRAD	External	Industrial PC	N/A	Standard operation


The main **limitations** of the acquisition system is the **bandwidth** required to transfer the images from the camera to the real-time server and from the server to the clients.

1936x1216 2,3 MB 3,5 MB 4,7 MB ~40 ms			Frame Size 12bit encoding	Data size per frame (clients)	
	1936x1216	2,3 MB	3,5 MB	4,7 MB	~40 ms


Acqu	uisition Software			Tools
Despite the diversity of the	pylon SDK	Real-time C++ server	An additional C++	

requirements, a modular acquisition system has been developed.

While there is a variety in the installed hardware (CPUs, network interfaces and switches, etc.), a **common**, **generic real-time** software in C++ is responsible for coordinating the acquisition process.

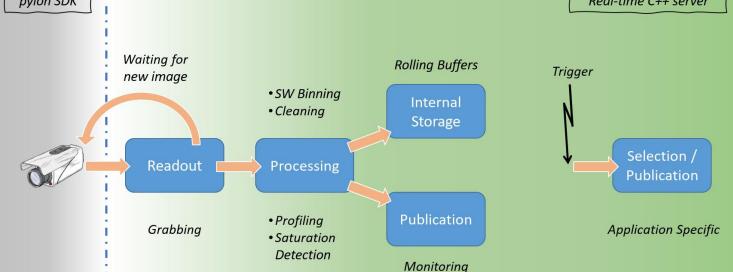


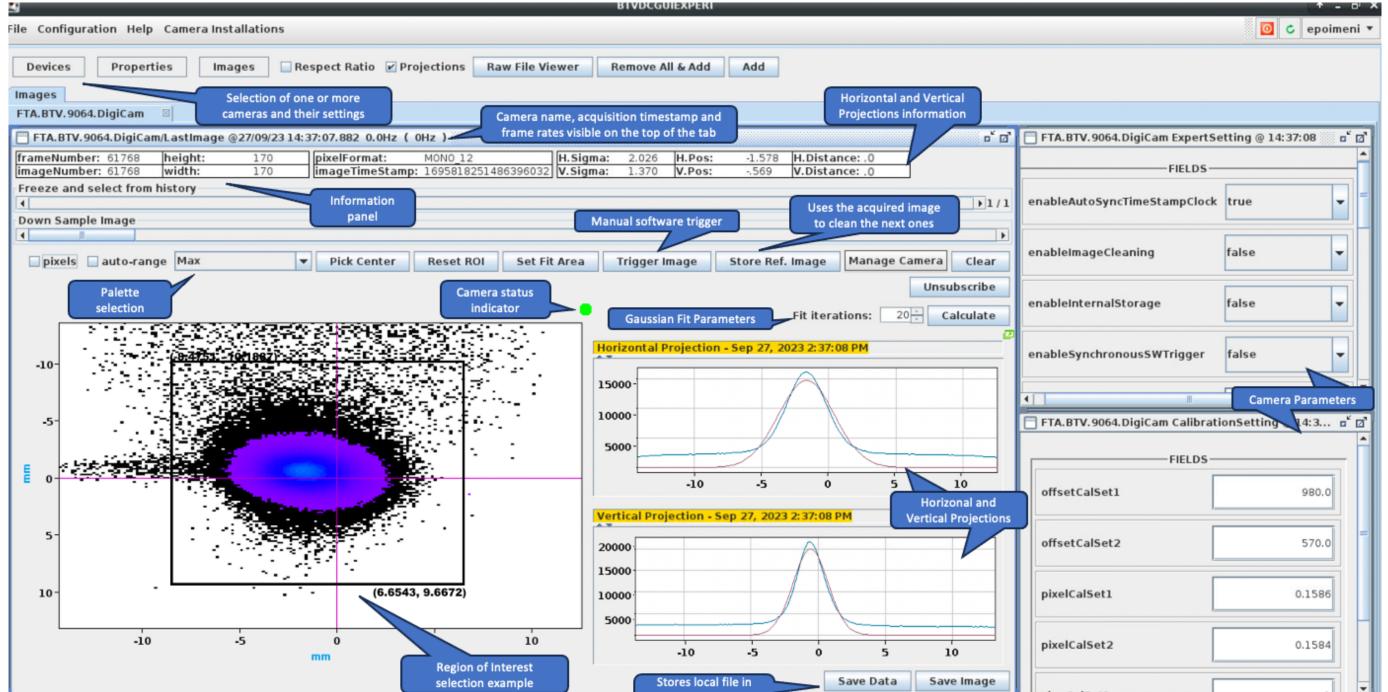
Image acquisition software model

> Saturation detection

 \mathcal{M}

Feature	Remarks
Saturation detection	Best image selection
Network optimization	Demanding throughput
nternal watchdog	Auto recovery from SEUs
SW timing subscriptions	Timing integration in SW
mage timestamping	Fine synchronisation
Binning in SW	Sanity checks maintaining the full image resolution
Synchronous SW trigger	When corresponding HW is not available
mage projections	Profiling
mage calibration	Pixel to mm translation

software for controlling the **power** of the cameras


A GUI in Java/Swing facilitating the use of the system

Web fixed displays to monitor the status of each installation.

Camera Status								
Green: OK, Red: ERROR, Yellow: REBOOTING, Grey: MISSING/UNREACHABLE/DISCONNECTED, Black: SYNC_PARAMS	Camera power	Time interval errors	Last time interval error	Last time interval error [ns]	Acquired frame rate [Hz]	Frame transmission delay [ms]	Switch port	Trigger
BTV42: OK	ON	0		0	10	0	1	TRIG_LINE1
BTV106: OK	ON	0	•	0	10	0	2	TRIG_LINE1
BTV350: OK	ON	0		0	10	0	3	TRIG_LINE1
BTV353: OK	ON	0		0	10	0	4	TRIG_LINE1
BTV354: OK	ON	0		0	10	40	5	TRIG_LINE1
EXPVOL1: OK	ON	0		0	9.8	0	6	TRIG_LINE1
SPECTRO1: OK	ON	0		0	9.8	40	7	TRIG_LINE1
SPECTRO2: OK	ON	0		0	10	40	8	TRIG_LINE1
SPECTRO3: REBOOTING	OFF	0		0	0	0	9	TRIG_LINE1
SPECTRO4: OK	ON	0		0	10	40	10	TRIG_LINE1
PLASMA6: DISCONNECTED	ON	0		0	0 Hz	0	11	TRIG_LINE1
PLASMA7: OK	ON	0	•	0	1 Hz	40	12	TRIG_LINE1
PLASMA8: DISCONNECTED	OFF	0		0	0 Hz	0	13	N/A
PLASMA9: OK	ON	0	•	0	1 Hz	0	14	TRIG_LINE1
	ON	0		0	1 Hz	0	15	TRIG LINE1

Fixed status display

Expert GUI

	plaintext or image	
PS 🗵	format	
27:02 ETA BTV 9064 Dialcam V : ciama: 1 270 maan: 560 distanca:		[

Conclusion

There is an on-going campaign to replace increasingly obsolescent analogue cameras used in most of CERN's beam visualisation systems with new digital equivalents. There are many challenges associated with providing a homogenised solution for the data acquisition of such systems including the variety in hardware and in the requirements for each installation.

Despite the diversity of the specifications, a generic, modular real-time software has been developed in C++ and installed in several locations to control such systems. The software accommodates the features of the legacy acquisition systems as well as the necessary additional ones including a synchronous software trigger and saturation detection. It integrates the CERN central timing in software when the corresponding hardware is not available and maintains an internal watchdog to recover from SEUs. Furthermore, it supports challenging optimisation installations network precise timestamping synchronisation. for the most well image as as for Lastly, additional tools have been developed to exploit the acquisition systems including additional C++ software for controlling the power of the cameras, a GUI in Java/Swing facilitating the use of the system and web fixed displays to monitor the status of each installation.

