
VISUALIZATION TOOLS TO MONITOR 
STRUCTURE AND GROWTH OF 

AN EXISTING CONTROL SYSTEM

O. Pinazza†,1,2, A. Augustinus2, P. M. Bond2, P. Chochula2, A. Kurepin3, M. Lechman2,4, D. Voscek2
†corresponding author; 1INFN, Sezione di Bologna, Italy; 2CERN, Geneva (CH); 

3Affiliated with an Institute Covered by a Cooperation Agreement with CERN, Geneva (CH);
4University of the Witwatersrand, Johannesburg, South Africa.

WinCC projects interdependence

ALICE Control Coordination has defined a policy to allow
connection between nodes of the same detectors, and to/from
the central systems.
The pictures show authorized (left) vs active connections (right):
• snapshot of the active connections is extracted from WinCC
• the diagram of authorized connections is maintained in a

central configuration file
Comparison of the two sets will reveal any unwanted and
missing connections.
Realized with javascript and D3.js library.

The ALICE core control system is running on 200 computers,
including 85 WinCC OA nodes, distributed among 15 detectors and
2 main central systems.
Thanks to the native WinCC OA DIST mechanism, it is very easy for
a project to access datapoints on a remote project. DIST is
powerful but WinCC lacks tools to control and monitor the status
of connections. In particular, as connections are symmetric, it is
not easy to determine the initiator.

The Finite State Machine

WinCC projects complexity
The control system of each of the 15 detectors forming part of
ALICE is developed on one or more worker nodes, depending on
the complexity and partitioning of the detector. WinCC and other
basic software is installed on each node, and detector experts
develop custom files as:
• Panels: XML (or WinCC PNL) files representing the graphical

interface with hardware and procedures.
• Pictures: graphical widgets and maps included in panels.
• Libraries: C-like code (WinCC ctrl++ language) containing

reusable detector specific code.
• Scripts: C-like code (WinCC ctrl++ language) executing on-

demand or automatic procedures.
• and SMI codes: the Finite State Machine logics regulating the

operational hierarchy.
Besides the local file system, each detector group can also use a
network file system shared between all its nodes, and reachable
from the central projects, meant as the final repository.

Using Microsoft Powershell scripts, the number of files
developed by the experts in each group was evaluated, both in
the local system and in the shared file system. The picture is
generated with javascript and the D3.js library.

The bubble picture shows that some of the more complex
detectors are actually controlled with a limited amount of
software, while some of the newer detectors have developed
enormous amounts of software.

The use of the shared system is also not optimal, despite the
advantages it offers. These observations indicate to us that a
new campaign of information and specific instructions shall be
distributed during the coming winter shutdown, in order to
improve the file system occupation.

Documentation for operators
Operators in control room supervise alarms and other events generated by detectors’ nodes, and
consult specific help files where they should find instructions to intervene on the faulty system.

Using python and matplotlib we analyzed the documentation prepared by the experts for DCS
shifters. We realized a word cloud according to the occurrence of the words themselves. It is
interesting to notice that the most common words refer to the intervention of experts (“call”,
“oncall”, “expert”, ..), more than giving instructions to be realized directly by the shifter.

In carrying out this word analysis, we also noticed the massive presence of expert names and
telephone numbers, which often turned out to be obsolete.

Hierarchical control of ALICE and its detectors
is accomplished with the help of a Finite State
Machine (FSM). Realized in SML/SMI++, this
logical structure allows to simplify the
operations through simple keywords
representing the device states and the actions
to be performed.
The ALICE FSM is the skeleton of DCS
operations performed in the control room:
through this hierarchy the DCS shifter can
interact with detectors’ parts and devices,
even without a specific knowledge of the
details.

To represent the full ALICE FSM in a graphical way, we have extracted all nodes and branches in a json file 
using the FwFSM API, and visualized it in a flower-like way, with javascript and the D3.js library . In the 
above Figure we have more than 17000 nodes, 11500 of which are hardware devices (the leaves). Three 
systems represent 70% of the whole set, and their complexity is sometimes source of problems in the 
overall operation. By looking at this figure, and evaluating the structure of such complex branches, we 
were able to assist developers and address them to some optimizations.

TPC

CPV

DCS

ALICE FSM

TOF

EMC

Front-end software
ALICE upgrade to the online-offline O2 readout system has required the development of a new board,
called Common Readout Unit (CRU), able to manage physics and condition data on optical lines, and
interfaced by a new driver (ALF) and a frontend software called FRED. FRED is developed and maintained
by central DCS, and allows access to the CRU without the need for an extensive software development.
Detectors’ customization is facilitated by the use of API and config files. Both central FRED and
detectors’ extensions are maintained in a common GIT repository site.

In order to check the extent of customization by detectors, a 
comparison was made between the lines of code developed 
for the FRED core (left) and the detector branches (right) 
available on the GIT site. 

Through a python script, we scrolled 
through the entire software repository, 
computed the number of lines of code 
of the different file types in a json file, 
and realized a graphical representation 
of the GIT site.
The picture is generated in javascript
and CodeFlower, based on the D3.js 
library.


