
CERN Accelerator Systems Department
Beam Instrumentation Group (BI)

Contact: manuel.gonzalez@cern.ch

Abstract

Requirements & Choice of Environment Integration in KNIME

Component Standardization:
• Python source code
• Configuration files (XML-XSD)

§ Main Requirements
§ Based on components representing acquisition system elements

§ E.g. beam characteristics, filters, cables, amplifiers
§ Extendable without technical knowledge of the tool internals
§ Interaction through a GUI

§ Define schematic & parameters + Explore & analyze results
§ Possibility to run simulations outside the tool (CLI)
§ Open-source principles
§ Python based or facilities to integrate Python modules

§ Based on our requirements several candidates were considered:

§ KNIME finally selected:
§ Large and dynamic community
§ Extensive functionality
§ Python extensions

Parameter Sweep Simulations

First Experience

Expanded simulation tree

§ Full chain simulation of a Beam Position Monitoring (BPM) system

§ Horizontal & Vertical positions = 4 processing chains

§ Mix of deterministic (e.g. cable) and stochastic modules (e.g. ADC)

§ Several parameters are swept:

§ Beam horizontal position, beam number of charges§ Standard technique to find optimal parameters
§ Each component can have multiple configurations

§ Defined individually or with some logic (e.g. linear range, logarithmic steps)
§ Optimized execution to avoid duplicates

§ modified Depth First Search (DFS) algorithm on a directed graph

Results Storage & Visualization
Conclusion

Filtering of File System & HDF5 structure

Beam Instrumentation Simulation in Python
M. Gonzalez-Berges, D. Alves, A. Boccardi, V. Chariton, I. Degl’Innocenti, S. Jackson, J. Martínez Samblas

Accelerator Systems Department, European Organization for Nuclear Research (CERN)
Geneva, Switzerland

Storage: HDF5 format selected:
§ Group together all results & metadata
§ Tools & APIs (Python, Java, C/C++)
§ Extensive functionality (e.g. caching,

compression, etc)

§ Complex and iterative process for designing acquisition electronics involves
optimizing a large number of parameters

§ Instrument Simulation in Python (ISPy) developed as a modular framework to
handle simulations, including a user-friendly GUI, efficient handling and
visualization of results, and parameter sweeping

§ KNIME Analytics platform chosen to due to its open-source model and
available functionality

§ Keep open-source principles for the development

§ In use for the Beam Position system for the future LHC upgrade
§ The library will be extended to other systems (e.g. Fast Beam Current

Transformers)

Contribution ID: THPDP060

The design of acquisition electronics for particle accelerator systems relies on simulations in various domains. System level simulation frameworks can integrate the results of specific
tools with analytical models and stochastic analysis. This allows the designer to estimate the performance of different architectures, compare the results, and ultimately optimise the
design. These simulation frameworks are often made of custom scripts for specific designs, which are hard to share or reuse. Adopting a standard interface for modular components
can address these issues. Also, providing a graphical interface, where these components can be easily configured, connected and the results visualised, eases the creation of
simulations. This paper identifies which characteristics ISPy (Instrumentation Simulation in Python) should fulfil as a simulation framework. It subsequently proposes a standard format
for signal-processing simulation modules. Existing environments which allow script integration and have an intuitive graphical interface have then been evaluated with the KNIME
Analytics Platform being the proposed solution. Additionally, the need to handle parameter sweeps for all simulation parameters and the need for a bespoke visualisation tool will be
discussed. Python has been chosen for all of these developments due to its flexibility and its wide adoption in the scientific community. The ensuing performance of the tool will also be
discussed.

Keywords: simulation, system design, digital twin, Python, performance

Visualization of Simulation with Parameter Sweep

Visualization:
§ DAVIT (Data Analysis and Visualization Tool)
§ General purpose tool
§ Python based (PyQtGraph, Pandas, etc)
§ Integrate data from many sources: simulation

results, logging system, post-mortem

KNIME template for including
new components

Deterministic Component (e.g. cable)

Stochastic Component (e.g. amplifier)

PyQt custom
application

KNIME Analytics
Platform

Kepler
Project

Simplified simulation with
several configurations

Resulting execution
paths

Simple Example:

Acquisition Chain for BPM System
(showing only 2 out 4 of outputs)

Sweep parameters
configuration example

