
whatrecord:
A Python-Based
EPICS File Format Tool

SLAC National Accelerator Laboratory is operated by Stanford University for the U.S. Department of Energy Office
of Science. Work supported by U.S. D.O.E. Contract DE-AC02-76SF00515

1. Development on GitHub:
 https://github.com/pcdshub/whatrecord

2. Sample pages deployed by GitHub Actions:
https://klauer.github.io/ioc-useless-test

ACKNOWLEDGMENTS

Ken Lauer (1) – klauer@slac.stanford.edu

1. SLAC National Accelerator Laboratory, USA

WHAT IS IT?

whatrecord is a Python-based parsing tool for
interacting with a variety of EPICS file formats. The
project aims for compliance with epics-base by using
Lark grammars that closely reflect the original Lex/Yacc
grammars.
whatrecord aims to answer the question “where did that
come from?” with its context-annotating tools and
integrated shell script interpreter.

FORMATS

Parse any of the following into intuitive Python
dataclasses using lark:

• Database files (V3 or V4/V7), database
definitions, template/substitution files

• Access security configuration files

• Autosave .sav files

• Gateway pvlist configuration files

• StreamDevice protocol files

• snlseq/sequencer state machine parsing

IOC SHELL STATE INTERPRETER

Interpret IOC shell scripts (i.e., st.cmd) and track:

• What files were loaded during startup?

• What records are available?

• What errors were found?

• What file and line did record X get loaded?

• Inter- or intra-IOC record relationships
This powerful feature can help you understand an IOC.

PARSE / INTERPRET EPICS FILES IN THE TERMINAL

• Frontend: Vue.js-based frontend single-page
application to search for records/IOCs/etc by name
and dig into the details

• Backend: API server to monitor IOC scripts and
serve IOC/record information

• Load and monitor scripts/files for changes and
provide REST API for querying

• Alternatively, static site export (see GitHub
Actions Example [2])

OR IN YOUR BROWSER

*
IOC:STREAM:log0

> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/st.cmd:30
> /home/runner/work/ioc-useless-test/ioc-useless-test/iocBoot/ioc-test/stream.db:26

record(stringin, "IOC:STREAM:log0") {
 field(INP, "IOC:STREAM:spy")
}

Save

stringin IOC:STREAM:log0

INP IOC:STREAM:spy

VAL

stringin IOC:STREAM:log1

FLNK IOC:STREAM:log0

INP IOC:STREAM:log0

VAL

stringin IOC:STREAM:spy

VAL

stringin IOC:STREAM:log2

FLNK IOC:STREAM:log1

INP IOC:STREAM:log1

 Records IOCs PV Map happi Gateway Duplicates Logs

Glob Regex

IOC:ACF:LI:OPSTATE

IOC:ACF:LI:lev1permit

IOC:ACF:Test

IOC:MOTOR:ASYN

IOC:MOTOR:M1MOTOR

IOC:MOTOR:M1MOTOR_able

IOC:MOTOR:M1MOTOR_ableput

IOC:MOTOR:M1MOTOR_twCh

IOC:MOTOR:M1MOTOR_vCh

IOC:MOTOR:M2MOTOR

IOC:MOTOR:M2MOTOR_able

IOC:MOTOR:M2MOTOR_ableput

IOC:MOTOR:M2MOTOR_twCh

IOC:MOTOR:M2MOTOR_vCh

IOC:STREAM:checksum

IOC:STREAM:cmd

IOC:STREAM:info

IOC:STREAM:log0

IOC:STREAM:log1

IOC:STREAM:log2

IOC:STREAM:spy

IOC:TEST:recordname

aliasname1

aliasname2

Results

Part of ioc-test

Archiver

Gateway

Access Security Group

Field table

Raw information

Record links

$ whatrecord parse whatrecord/tests/iocs/db/pva/iq.db
 | jq '.records[] | [.name, .record_type,
.fields.OUT.value]'
[
 "$(PREFIX)Rate",
 "ao",
 "$(PREFIX)dly_.ODLY NPP"
]
[
 "$(PREFIX)Delta",
 "ao",
 null
]
...

$ whatrecord parse whatrecord/tests/iocs/db/pva/iq.db
 | jq '.records[] | [.name, .info["Q:group"]]'
 ...
[

 "$(PREFIX)Phase:I",

 {
 "$(PREFIX)iq": {

 "phas.i": {

 "+type": "plain",
 "+channel": "VAL"

 }

 }

 }
]

...

OTHER THINGS

• Try it out easily with docker-compose
• Makefile introspection + graph output
• GDB Python script for introspecting IOC binaries
dbLoadRecords [str: filename] [str: substitutions]

 modules/database/src/ioc/db/dbIocRegister.c line 53

• True-to-EPICS macro handling with epicsmacrolib
(PyPI/conda-forge)

• Plugins for TwinCAT PLC projects (symbol -> source
+ PV), LDAP info, …

• And some other things…

MAKE GRAPHS… AND TRY TO UNDERSTAND YOUR IOC

3. Lark
https://github.com/lark-parser/lark/

EBNF GRAMMAR SNIPPET
This is what the grammars look like:

Makefile introspection for dependency information

Sequencer State Notation Language support

Intra-IOC record links

As well as inter-IOC record links:

Vue.js frontend sample

database: record*

record: "record" record_head record_body?

record_head: "(" string "," string ")"
record_body: "{" record_field* "}"

record_field: "field" "(" string "," string ")"
 | "info" "(" string "," string ")" -> record_field_info
 | "alias" "(" string ")" -> record_field_alias

