
Background
Over 77,000 Accelerator Device Objects (ADOs) provide the software interface 
to settings and measurements for accelerator equipment [1]. A majority of the 
ADOs are hosted on Front End Computers (FECs) with limited memory and 
CPU resources.

ADOs have four primary data operations: 
• Synchronous gets - blocking while retrieving data 
• Synchronous sets - updating a set point
• Metadata fetches - retrieving static properties about a readback or set point
• Asynchronous gets - receiving live streams of data updates

Asynchronous gets require maintenance of information which can consume 
substantial memory when numerous clients are connected. Many applications 
establish these by default, and resource overconsumption causes FECs to 
crash, interrupting users and operations. 

A prior Reflective ADO project, developed ~10 years ago, faced re-
liability and maintainability issues inherent to the system and fell out of use [2].

Requirements
Develop a system which removes asynchronous data delivery load from ADOs 
while also…
• Handling connection interruptions gracefully
• Providing easy configuration and deployment
• Fitting seamlessly into the Controls ecosystem

Architecture
Reflective Server (RS): This is responsible for interfacing directly with client 
applications and providing facilities to communicate with ADOs efficiently.

• Logically separate frontend (application) & backend (device) 
communication interfaces

• Binding layer for connection management, request translation, reference 
counting, data caching

Asynchronous data updates are multiplexed through 1 connection to an FEC.
Data updates received by Reflective Server are fanned-out to many client 
applications through the frontend interface. Thread concurrency prevents 
delays if unresponsive or failed clients exist. 

Synchronous get requests may optionally retrieve data through the binding 
layer cache. If data is available, an unnecessary call to the device is 
prevented. 

All other requests are proxied directly through to the device.

Reflective-Aware Central Name Service (rCNS): Proxy to the Central Name 
Service, allows applications to lookup RPC program information for ADOs 
using common identifiers.

• Tracks each RS instance and ADOs it reflects.
• Intercepts requests for reflected ADOs, providing information pointing clients 

to the responsible RS.
• Clients able to bypass reflection by simply CNS instead of rCNS. This is 

necessary for for real-time processes requiring low-latency.

Future Work
• Broader rollout of across the complex to test the system's scalability
• Robust, centralized configuration system to simplify RS management
• Implement EPICS frontend & backend interfaces for interoperability with EIC 

components
• Identify ADOs using “getters” incompatible with the RS get cache and 

developing a seamless solution.

Reflective Servers: Seamless Offloading of 
Resource Intensive Data Delivery 
S. Clark, T. D'Ottavio, M. Harvey, J.P. Jamilkowski, J. Morris, S. Nemesure
Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York, U.S.A.

Ability to handle much higher client load than 
FECs directly - 100’s of clients concurrently

Analysis shows only 2x latency increase using 
Reflection versus communicating directly with 
FECS

Latency measures include…
• Network round-trip time
• Data marshalling in Reflective Server
• Request/Response processing
• Data fan-out in binding logic

Performance

Figure 3, above: Round-trip time for Synchronous Get Calls, 
utilizing the binding-layer cache

Figure 4, below: Round-trip time for Synchronous Get Calls, 
directly proxying to FEC via Reflective Server

0.57

0.99

1.62

2.07

1.14

2

4.1

5.14

0.00

1.00

2.00

3.00

4.00

5.00

6.00

1 10 50 100

La
te

nc
y 

(m
s)

Number of Clients

Asynchronous Data 
Delivery Latency

Direct
Reflected

Figure 2: Latency measurements of Asynchronous Data 
Deliveries vs. Number of Clients connected

References
1. D. Barton et al., “Rhic control system,” Nuclear Instruments

and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 499,
no. 2, pp. 356–371, 2003, The Relativistic Heavy Ion Collider
Project: RHIC and its Detectors.

2. B. Frak, “Applications of transparent proxy servers in control
systems,” in ICALEPCS, 2013.

Figure 1: Reflective Architecture Design


