
THE CMS DETECTOR CONTROL SYSTEMS ARCHIVING
W. Karimeh1, CERN, Geneva, Switzerland
C. Vazquez, CERN, Geneva, Switzerland

F. Glege, CERN, Geneva, Switzerland
M. Chamoun, Université Saint-Joseph de Beyrouth, Beirut, Lebanon

1also at Université Saint-Joseph de Beyrouth, Beirut, Lebanon

Abstract
The CMS experiment relies on its Detector Control Sys-

tem (DCS) to monitor and control over 10 million chan-
nels, ensuring a safe and operable detector that is ready to
take physics data. The data is archived in the CMS Oracle
conditions database, which is accessed by operators, trig-
ger, data acquisition, and offline data reconstruction sys-
tems. In the upcoming extended year-end technical stop of
2023/2024, the CMS DCS software will be upgraded to the
latest WinCC-OA release, which will utilise the SQLite da-
tabase and the Next Generation Archiver (NGA), replacing
the current Raima database and RDB manager. Taking ad-
vantage of this opportunity, CMS has developed its own
version of the NGA backend to improve its DCS database
interface. This paper presents the CMS DCS NGA backend
design and mechanism to improve the efficiency of the
read-and-write data flow. This is achieved by simplifying
the current Oracle conditions schema and introducing a
new caching mechanism. The proposed backend will ena-
ble faster data access and retrieval, ultimately improving
the overall performance of the CMS DCS.

INTRODUCTION
Aimed at probing the deepest questions of fundamental

physics, the Compact Muon Solenoid (CMS) is one of the
flagship experiments at CERN's Large Hadron Collider
(LHC). The Detector Control System (DCS) is integral to
its functionality, enabling safe operations and efficient con-
trol of the LHC experiments. From the early stages of de-
sign, all LHC experiments have adopted WinCC Open Ar-
chitecture (OA) [1] from ETM as their default Supervisory
Control and Data Acquisition (SCADA) software.

At CMS, a myriad of sensors and control units require
unwavering precision, addressed by the distributed and re-
dundant DCS projects [2]. With its real-time data assimila-
tion, the DCS projects play an indispensable role in ensur-
ing operational consistency while also offering invaluable
archival records. The vast, real-time data collected by the
DCS not only helps in ongoing operations but also serves
as an essential historical record, enabling researchers to un-
derstand anomalies, enhance the system, and plan future
experiments.

Data collected by WinCC OA is archived in an Oracle
database: The Conditions Database. The paper describes
the evolution of the CMS DCS conditions database over
the past 15 years of operations and unveils the latest devel-
opment: the CMS Next Generation Archiver backend.

CMS CONDITIONS DATABASE
WinCC OA uses an RDB manager that serves as a bridge

between its internal database, RAIMA, and external data-
bases, notably the Oracle DB used at CERN. The condi-
tions database schema, provided by ETM, categorizes data
into metadata tables —representing WinCC OA projects
internal datapoints— and real data tables, which hold
events and alerts records.

At CMS, the vast volume of data in the event and alert
tables presented a challenge, making data retrieval partic-
ularly time-consuming from the expansive tables that
housed these records.

To address these challenges, the CMS conditions data-
base schema was developed on top of the official one, in-
corporating PL/SQL scripts. Over the years, it has seen sig-
nificant enhancements, introducing several key features:

DPT Tables
In WinCC OA, data structuring revolves around Data

Points (DP), each being categorized under a specific Data
Point Type (DPT). Each DP can encompass one or more
Data Point Elements (DPEs), where every DPE represents
a unique value or state.

To optimize the distribution and manage the extensive
load of the events table, the CMS schema employs PL/SQL
scripts. These scripts facilitate the creation of new DPT ta-
bles, where columns are designated for DPE names, and
they systematically channel DPE values into their respec-
tive tables.

Last Value Tables
Due to the large size of DPT tables and the need for cer-

tain applications to promptly access the most recent values
to understand the current state of the detector, a 'last value'
(LV) mechanism has been incorporated into the CMS
schema using PL/SQL functions.

This approach led to the creation of an LV table corre-
sponding to each DPT table. Each LV table is consistently
updated with the latest values for every datapoint element.
When a new value is received, it's compared to its prede-
cessor in the LV table. If the two values match, the new one
isn't archived in the DPT table. Furthermore, a dead band
configuration is introduced for every DPE within the LV
table, ensuring the historical DPT tables only store signifi-
cant data variations and filter out minor deviations.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO05

WE3BCO05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1022

Software

Data Management

Static Datapoint ID
While the standard WinCC OA DB schema identifies a

datapoint through its internal project ID, the CMS version
adopts a schema that employs a static identifier for each
datapoint. This strategy mitigates potential remapping is-
sues that might arise during routine activities like project
and/or datapoint recreation.

As a solution, a dedicated table, DP_Name2id, has been
introduced to catalogue unique IDs—generated using a da-
tabase trigger and sequence—for every datapoint. This en-
sures the conditions database remains consistent, even in
the face of potential ID changes in the WinCC OA projects.

CMS NGA BACKEND
The DCS projects at CERN will be upgraded to the latest

WinCC OA version 3.19 which introduces the new SQLite
internal database (replacing the RAIMA database) and the
NGA replacing the RDB manager. In a collaborative effort
between CERN and ETM, the NextGen Archiver (NGA)
[3] project was initiated to craft a modular and scalable ar-
chiving solution tailored for CERN's SCADA systems.
Building upon the core achievements of the NGA, the
CMS embarked on the development of a specialized
backend software, tailored for its need and special schema.

With the planned upgrade of CMS DCS projects to
WinCC OA version 3.19 during the year-end technical
shutdown of 2023-2024, two pivotal changes will take
place: the phasing out of the RAIMA database in favour of
the SQLite internal database, and the substitution of the
RDB manager with the NGA. The latter has been a collab-
orative endeavour between CERN and ETM, aimed at de-
livering a modular and scalable archiving solution tailored
for CERN's SCADA systems.

Building on the foundational achievements of the NGA,
CMS has initiated the creation of specialized backend soft-
ware. This new development is designed to cater to the re-
quirements of CMS.

MOTIVATION
The existing structure of the CMS schema organizes data

into unique DPT and LV tables, as highlighted earlier.
While this system has effectively served its purpose, the
introduction of NGA spotlighted areas for improvements.
With the computational demands of PL/SQL scripts exert-
ing pressure on the shared database side, there was a clear
incentive to reallocate the PL/SQL logic from the central-
ized database configuration to the more distributed NGA
infrastructure. However, it was imperative to make this
transition without altering the existing schema, ensuring
backward compatibility.

The objective behind this move was two-fold: to intro-
duce a more cohesive method for data management and to
alleviate considerable operational burdens from the central
database, thus paving the way for an improved and sturdy
archiving strategy within the CMS DCS architecture.

DESIGN
In the design phase of the CMS NGA backend, several

recurrent events became evident:
 Database Structure Verification The repeated

need to ascertain the existence or absence of specific
tables or columns in the database.

 Datapoint Validation Recurrent requirements to
validate the presence of the CMS static DP IDs and
retrieve the ID for a given datapoint.

 Data Storage Path Determination: Identify the table
and column intended for the storage of data for a given
DPE.

 Access to the LV Data A standing necessity to
swiftly retrieve the latest value of a designated DPE.

To face the above recurrent challenges and to achieve

superior performance, the CMS NGA backend incorpo-
rated a new feature: in memory caching mechanism for the
metadata and LV data structures. The QT framework’s
tools:
 QMap Red-Black tree-based associative container,

offering an ordered data storage making it suitable for
frequent key-based lookups.

 QHash: A hash table-based container, ensuring av-
erage constant-time lookups and insertions, prioritiz-
ing retrieval speed.

 QExplicitlySharedDataPointer Providing effi-
cient and safe sharing of data between objects. This
not only prevented unnecessary overhead from deep
copying but also ensures that an object's data is dupli-
cated only when modifications are made, optimizing
both memory and computational resources.

This has led to the introduction of the following caching
data structures:

Metadata Caching
 DPE Metadata QMap (elementIdAndDpeMetada-

taMap) A mapping of the project’s DPE IDs to their
respective metadata.

 Table and Column List QHash (tableAndColumn-
ListHash) A mapping which correlates tables with
their corresponding list of columns.

 DP Internal ID QMap (dpInternalIdMap) A
QMap which correlates DP static database ID with
their corresponding DP name.

LV Caching
 DPE Data QMap (elementIdAndDpeDataMap)

An explicitly shared data pointer map that associates
the WinCC OA project DPE IDs with their LV data.

 DPE Dynamic Data Map (elementIdAndDpe-
DynDataMap) This map correlates the WinCC OA
project DPE IDs of dynamic arrays to their LV data.

 Global Table and DPE Data QHash (GlobalTa-
bleAndDpeDataHash) This mapping structure
serves as a quick reference for all the LV entries de-
fined in the database LV tables.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO05

Software

Data Management

WE3BCO05

1023

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

The introduced caching mechanism primarily targets
performance enhancement by facilitating the rapid re-
trieval of DPE metadata and the most recent values. This
ensures optimal system responsiveness. One of its other vi-
tal advantages is the notable reduction of strain on the pri-
mary database and network. By caching data that's ac-
cessed frequently, it not only mitigates the database's oper-
ational pressures but also optimizes network efficiency. A
defining feature of this mechanism is its scalability. It's
adeptly designed to handle growing data volumes, ensuring
that performance remains consistent regardless of the in-
crease.

DATA FLOW
Within the CMS NGA backend, data management and

processing are orchestrated via two distinct flows:
Metadata Handling and Value Archiving. These defined
handlers ensure a structured and efficient approach to con-
sistently synchronise the database and the local cache
structures.

Metadata Handling
The CMS NGA backend has outlined a structured proce-

dure to manage incoming DPE metadata updates from the
NGA frontend. This can be broken down into a few distinct
steps:

1. Identifier Transformation
Upon receipt, the DPE metadata undergoes a transfor-
mation to fit the constraints of the Oracle database. No-
tably, elements like DPT and LV tables names have a
character limit, which is capped at 30 characters.
2. Integrity Assessment
The system first checks the elementIdAndDpeMetada-
taMap cache to determine if the DPE is already known.

For New DPEs:
 The dpInternalIdMap cache is consulted to verify if an

internal identifier already exists for the DPE. If not, the
backend creates a new ID, saves it in the
DP_NAME2ID table in the database, and subse-
quently updates the dpInternalIdMap.

 The system verifies the presence of the associated DPE
table and column within the tableAndColumnListHash
cache. If these aren't present, they're established in the
database, and the cache is updated accordingly.
For Known DPEs:

 The metadata attributes - specifically, the table name,
column name, and data type - are reviewed. If there are
mismatches or updates needed, the system updates
both the database and cache accordingly.

3. LV Synchronization
As a final step, the last-value (LV) data associated with
the DPE is synchronized using the GlobalTa-
bleAndDpeDataHash global cache. This step ensures that
the system always maintains a consistent representation
of the data across its various components.

Value Archiving
Upon receipt of data batches from the NGA frontend, the

CMS NGA backend rigorously processes each DPE value.

It does so by first establishing intermediary structures,
which subsequently act as binding values for the SQL que-
ries. This ensures efficient updating of the LV and DPT ta-
bles in the database. The series of operations involved in-
clude:

1. Metadata and LV retrieval
The first step of the DPE value processing is the retrieval
of its metadata from the cache along with its LV data.
2. Temporary data structure building
 The incoming DPE value is compared with the LV rec-

ord taking the dead band into account. According to
this comparison, the temporary structures are updated.

 Special cases, such as when the DPE value returns
NaN (Not a Number), are handled with caution to en-
sure they are correctly stored in the Oracle database
without causing discrepancies.

3. Database and cache update
 Once all the DPE data values have been processed, the

backend initiates SQL batch scripts to update the DPT
and LV tables using the temporary data structures.
This is followed by an update to the cache structures.

By adhering to this organized approach, the CMS NGA

backend ensures the accurate and efficient handling of DPE
values. This contributes to a more reliable and robust data
management system, capable of handling large volumes of
incoming data without compromising on data integrity.

FUTURE DEVELOPEMNTS
Current developments are undergoing extensive testing

and performance evaluations. Preliminary results indicate
significant improvements, especially in distributed systems
with a high data archiving load. These enhancements, once
fully validated, can further optimize the CMS NGA
backend system, paving the way for more robust and scal-
able implementations in future iterations.

CONCLUSION
This paper detailed the design and implementation of an

advanced in-memory caching mechanism for the CMS
NGA backend, highlighting its efficacy in metadata and
last-value data structures management. By leveraging QT
framework’s data structures, the system efficiently ad-
dresses several recurrent challenges, ensuring rapid data
retrieval and optimal performance. As testing and system
improvement continues, the promise of even greater effi-
ciency in high-load, distributed system.

REFERENCES
[1] Simatic WinCC Open Architecture SCADA Software from

ETM (Siemens subsidiary), http://www.etm.at
[2] R. Gomez-Reino et al., “The Compace Muon Solenoid De-

tector Control System”, in Proc. ICALEPCS'09, Kobe, Japan,
Oct. 2009, paper MOB005, pp. 10-12.

[3] P. Golonka, M. Gonzalez-Berges, J. Guzik, and R. Kulaga,
“Future Archiver for CERN SCADA Systems”, in Proc.
ICALEPCS'17, Barcelona, Spain, Oct. 2017, pp. 1442-1445.
doi:10.18429/JACoW-ICALEPCS2017-THPHA037

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO05

WE3BCO05

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1024

Software

Data Management

