
MODULAR AND SCALABLE ARCHIVING FOR EPICS CHANNEL ACCESS
AND GENERAL TIME SERIES USING SCYLLA AND RUST
D. Werder§, T. Humar‡, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
To unify, simplify and improve our archiving setup we

have developed a more modular archiver architecture
based on an existing database with industry adoption and
enterprise support, combined with additional services
which ingest data from EPICS sources into the database
and serve user requests for channel data from the
database. The prototype is currently tested at the Swiss
Free Electron Laser (SwissFEL) and planned to run in
production mode from the beginning of 2024. Additional
support for more input sources beside EPICS sources is
also under development.

CURRENT ARCHIVING SITUATION
At the Paul Scherrer Institut we operate at the moment

several different software products to archive our
EPICS [1] process variables (PV) as well as data from
non-EPICS sources. At the Swiss Light Source (SLS) we
use the EPICS Channel Archiver [2], while at the
SwissFEL [3] we use the EPICS Archiver Appliance [4]
for the EPICS channels as well as the SwissFEL-
Databuffer to buffer beam-synchronous data at the
machine pulse rate, where the difference between the
archiver and buffer being only that the buffer retains the
data only for a limited time. Also HIPA, Proscan and
several other smaller systems operate archivers in
differing versions.

The operation of these heterogeneous setups binds
resources, requires extensive expertise and makes the
operation more difficult than it needs to be. Also, the
current products are not easy to scale and hard to enhance
for replication and high availability. Furthermore, it is
often difficult, unspecified or impossible to access data
from an external process in a defined, synchronized way,
and also the file formats themselves are often used in
rather small communities so that the available tooling can
be limited.

At this time, the upgrade program for SLS 2.0 is now
ongoing, which will among other changes bring a
substantial increase in the number of archived channels.
To meet the evolving requirements and to simplify and
unify our archiving and buffering architecture, we have
conducted a design study with the purpose to find a more
modular and hopefully more sustainable approach.

DESIGN GOALS AND ARCHITECTURE
Instead of the current rather monolithic archiver

solutions we would like to de-couple and modularize the
setups. Our solution should be more easy to scale, should

offer tunable replication and availability. We would like
to be able to access the data concurrently in a well-
defined way with more clear interfaces. The core storage
engine should therefore be a dedicated database product
which runs in its own process(s) and offers access via a
network protocol. At the same time, we want to avoid
having to maintain a custom solution and prefer an
existing product which sees a wider usage also in
industry.

The other components around the database to handle
the different source types, including now Channel Access
and in the future Beam-Synchronous-Readout and PV-
Access, should be able to interact independently and
concurrently with the common database. We give a brief
overview of the architecture, after which we describe the
individual components and their interaction.

Overview
The first component of this architecture, named Ingest

service, handles the communication with the EPICS
Channel Access Input Output Controllers (IOCs),
maintains and monitors the channels (“virtual circuits”),
and inserts the received updates from the PVs into the
database.

A second component, named Retrieval service, is
responsible to serve user requests for channel data and
can deliver full events as well as aggregated and time-
binned data. It communicates with the database as well.
Other direct interaction between Ingest and Retrieval is
not required, the database is the only connecting interface
between the services.

As our database we have chosen Scylla [5]. Channel
information and some other data which lends itself more
to transactional databases is kept in Postgres [6].

Ingest service
The Ingest service [7] takes a list of channel names as

input. It finds the IP addresses of the corresponding IOCs,
maintains communication with the IOCs via the EPICS
Channel Access Protocol [8], opens the channels on the
IOCs and monitors for updates.

Updates to the PV values are inserted into the database,
at which point we can also already maintain a reduced,
aggregated and/or binned time series which is meant for a
typically longer retention period.

The status of the channel and of the TCP connection is
monitored and written as a separate time series to the
database. To distinguish communication silence due to a
lack of PV updates from a broken IOC connection, the
Ingest service can issue a Channel Access Echo message.

__

§ dominik.werder@psi.ch
‡ tadej.humar@psi.ch

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO01

WE3BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1008

Software

Data Management

The Ingest service searches for the IP address of a
given channel via the usual EPICS UDP search on a given
list of broadcast addresses. Found IOC addresses then get
cached in the database which reduces the startup time.
Cache entries are invalidated when Ingest encounters
issues during an attempt to open a channel.

The event and data rate from a given IOC can
optionally be throttled if it exceeds a configured threshold
or if the connection contains e.g. unusually large
waveforms.

A HTTP API allows inspection and configuration at
runtime. It is possible to add and remove channels, as well
as query the status of a specific channel or a set of
channels selected by a pattern. Metrics from the Ingest
service are also exposed via this HTTP endpoint in the
format as used by Prometheus [9]. For the development of
the Ingest (and Retrieval) service, we use the Rust [10]
language. This language offers a unique combination of
memory safety, predictable performance without garbage
collector, powerful type system and machine code
generation via LLVM [11]. The services are designed in a
fully futures-based fashion, taking advantage of the
async/await support of the language. We use the
Tokio [12] runtime for execution. In addition, we use the
Tokio-Tracing [13] library for flexible logging and
integration with products for the collection of application
traces.

All data flow within the Ingest service, specifically
where it crosses synchronization boundaries, is done via
channels. We do not use manual locks, and there is no
manual threading and no shared memory used.

During testing, we use Valgrind to run Ingest under a
reduced random production load for additional
verification.

Database
The choice of Scylla was driven by our need for

availability, redundancy and easy scalability. Scylla
emerged as a rewrite of the Cassandra [14] database and
continues the same architecture in a refined way. More
performance is also gained from its more optimal usage of
modern hardware.

Each node in a Scylla cluster is equal, there is no
distinction between “main” and “secondary” nodes. Data
is replicated with a chosen replication factor so that a
chosen number of nodes hold the same data. Clients can
select the number of nodes from which a confirmation is
required before a transaction is considered as committed.

At its core, Scylla (like Cassandra) is a key-value store,
meaning access is optimized for the case that the client
provides the specific key it wants to access, while cluster-
wide scans are prohibitively expensive. Within a key, a
set of rows is stored, ordered by a secondary clustering-
key. To avoid confusion, the “main” key is called
partition-key.

Given a partition-key that the client wants to access, it
can compute the set of of nodes that, to the best of the
client’s current knowledge, is responsible for the given
partition-key, so that in the most common case the request
can be sent directly to the correct node within the cluster.

EPICS PVs contain data of a certain data type. Scylla
also offers the usual basic primitive types, together with a
List type. In order to not lose performance we avoid
storing data from the PVs as binary blobs, but instead in
separate, accordingly typed Scylla tables.

For our use case of storing time series, our partition-key
consists of the series identifier and a time range bucket.
The clustering-key is the offset within the given time
bucket. While the width of this time bucket is often fixed
in many products, we have chosen to let this width vary
dynamically based on the event rate. This choice is
possible when we assume that under normal
circumstances only a single Ingest will insert data for a
given channel. If that assumption should ever not hold
true, the issue can be discovered on read and corrected.

There are many other database systems on the market,
each with their own different trade-offs. For our
application we have put more weight on the factors of
ease of scalability, redundancy, availability and
homogeneity within the cluster, which have led to our
choice.

Retrieval service
The Retrieval service [15] offers a HTTP API to look

up channel information and fetch recorded data. Channel
information contains most importantly the scalar type of
the time series, the shape (e.g. scalar or waveform) and
assigns each time series a unique identifier. Event and
binned data can be fetched as JSON as well as in binary
formats where we for improved efficiency use streams-of-
structs-of-arrays.

In addition, the Retrieval has the option to perform
aggregation for min/max/avg/var, and unweighted or
time-weighted binning. It is also possible to transform
data on the fly using a WebAssembly program which we
have tested using the Wasmer [16] WebAssembly runtime
embedded into the Retrieval, even though a corresponding
interface is not yet available to make this accessible to
potential users.

Ingest Configuration
The configuration of the ingest service consists in the

simplest case of two files. The first is the main
configuration file which contains the coordinates of the
involved databases and the name of a second file, which
specifies the list of channels to be archived.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO01

Software

Data Management

WE3BCO01

1009

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Example of a configuration to archive:
channels: channel-list.txt

search:

 - “172.16.16.255”

 - “172.16.24.255”

 - “172.16.32.255”

scylla:

 hosts:

 - scylla-node-01:19042

 - scylla-node-02:19042

 - scylla-node-03:19042

postgresql:

 host: postgres-node

 port: 5432

 name: channeldb

 user: ..

 pass: ..

while the channel list referenced by the main
configuration file contains all the channel names to be
archived, e.g.:
SARCL01-DBPM120:X1
SARCL01-DBPM120:X2 (etc.)

Availability and Deployment
Care is taken to allow for easy deployments. The

application is deployed as a single executable and links
only against some of the very basic shared libraries of the
operating system, which are in the case of our Redhat [17]
linux environment: linux-vdso, librt, libpthread, libm,
libdl, libc, libgcc_s, ld-linux-x86-64.

Development of Ingest Prototype at SwissFEL
Our development environment consists of a four-node

Scylla cluster assembled from decommissioned servers
having Xeon E5-2680v2 Ivy Bridge CPUs (year 2013),
spinning disks and 130 GB RAM assigned to Scylla. The
Ingest service runs separately on a fifth node.

We configure Ingest with the 301k channels of
SwissFEL, which are spread over 1290 IOCs. The total
incoming traffic from the IOCs is on average 20.4 MB/s
and results in 267 k/s inserts into the database on average.
The CPU utilization is evenly spread over the assigned
cores and without spikes on individual cores. The
memory footprint of Ingest is negligible. The longest
consecutive test run extended over 68 days, ended on
purpose by user command.

Monitoring and Metrics
Besides log messages, Ingest, Retrieval and also Scylla

are instrumented with a wide range of counters,
histograms and values. The metrics of all three
components can be scraped by Prometheus [8] and
visualized for example in Grafana [18]. Some basic
variables include the total rate of inserts by Ingest into the
Scylla cluster (Fig. 1)

Figure 1: Rate of inserts by Ingest service into database.

as well as the percentiles of the total time that the
average Channel Access event spends inside the Ingest
service from the receive on the network to the commit
acknowledged by the Scylla cluster (Fig. 2).

Figure 2: Quantiles of the duration between the receive of
a Channel Access event update from the network and the
commit confirmation for that update by the database
server. Shown are 0.999, 0.99, 0.90 and 0.50 quantiles.

STATUS AND OUTLOOK
Started from a feasability study, we have demonstrated

that the design works well and ingests our Channel
Access data from all SwissFEL IOCs. The goal is to reach
neccessary quality for basic production operation at the
end of 2023. To that end some refactoring and
simplification is in order based on the observations so far,
user-friendliness has to be improved and commands have
to be added to the HTTP API to allow for long-term 24/7
operation. From beginning of 2024, we plan to have the
new hardware available and to run Ingest continuously at
SwissFEL in parallel with the existing archivers and
verify correctness with a more detailed comparison study.

REFERENCES
[1] EPICS, https://epics.anl.gov/
[2] EPICS Channel Archiver,

https://epics.anl.gov/docs/GSWE/starttools/c
hannelarchiver.htm

[3] SwissFEL, https://www.psi.ch/en/swissfel
[4] EPICS Archiver Appliance,

https://slacmshankar.github.io/epicsarchiver
_docs/index.html

[5] ScyllaDB, https://www.scylladb.com/
[6] PostgreSQL, https://www.postgresql.org/
[7] DAQ Ingest,

https://github.com/paulscherrerinstitute/daq
ingest

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO01

WE3BCO01

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1010

Software

Data Management

[8] EPICS Channel Access Protocol,
https://epics.anl.gov/base/R3-16/
0-docs/CAproto/index.html

[9] Prometheus, https://prometheus.io/
[10] Rust programming language, https://rust-lang.org/
[11] LLVM, https://llvm.org/
[12] Tokio, https://tokio.rs/

[13] Tokio-Tracing,
https://tokio.rs/tokio/topics/tracing

[14] Cassandra, https://cassandra.apache.org/
[15] Retrieval,

https://github.com/paulscherrerinstitute/daq
buffer

[16] Wasmer, https://wasmer.io/
[17] Redhat Linux, https://redhat.com/
[18] GitHub Actions,

https://github.com/features/actions/

[19] Grafana, https://grafana.com/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE3BCO01

Software

Data Management

WE3BCO01

1011

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

