
LCLS-II EXPERIMENT SYSTEMS
VACUUM CONTROLS ARCHITECTURE∗

M. Ghaly† , A. Wallace, SLAC National Accelerator Laboratory, Menlo Park CA, U.S.A

Abstract
The LCLS-II Experiment System Vacuum Controls Ar-

chitecture is a collection of vacuum system design tem-
plates, interlock logic, supported components (eg. gauges,
pumps, valves), interface I/O, and associated software li-
braries, which implement a baseline functionality and sim-
ulation. The architecture also includes a complement of
engineering and deployment tools including cable test boxes
or hardware simulators, as well as some automatic configu-
ration tools. Vacuum controls at LCLS span from managing
rough vacuum in complex pumping manifolds, protection of
highly-sensitive x-ray optics using fast shutters, maintaining
ultra-high vacuum in experimental sample delivery setups,
and beyond. Often, the vacuum standards for LCLS systems
exceed what most vendors are experienced with. The system
must maintain high-availability while remaining flexible and
adaptable to accommodate ongoing modifications. This pa-
per provides an overview of the comprehensive architecture
and the specific requirements of the LCLS systems. Addi-
tionally, it introduces how to utilize this architecture for new
vacuum system designs. The architecture is intended to in-
fluence all phases of a vacuum system life-cycle, and ideally
with the goal of becoming a shared project for installations
beyond LCLS-II.

INTRODUCTION
The majority of LCLS experiments and measurements

necessitate a vacuum environment as they rely on the absence
of any background interference. Furthermore, various optic
devices are highly sensitive to vacuum levels, with any level
above Ultra High Vacuum (UHV) potentially accelerating
the rate of contamination on the mirror surface.

The overarching Experiment Controls System (ECS) vac-
uum controls system is responsible for controlling vacuum
devices and protecting both vacuum components and vac-
uum itself. Operating at a high availability, the system sup-
ports a diverse array of vacuum devices, including gauges,
pumps, valves, and other related devices and controllers.
Utilizing a single vacuum Programmable Logic Controller
(PLC) for numerous devices, the system efficiently handles
complex logic necessary to enforce protection interlock re-
quirements. Vacuum interlocks established to prevent the
system from entering an unsafe or undesired state. For in-
stance, the system should inhibit the operator from opening
a valve when the differential pressure across this valve ex-
ceeds a certain limit. Additionally, reactive interlocks are
implemented for the closure and isolation of specific vacuum

∗ Work supported by U.S. D.O.E Contract DE-AC02-76F00515.
† mghaly@slac.stanford.edu

volumes to prevent the propagation of pressure events from
adjacent sections.

Furthermore, the vacuum control system interfaces with
other systems such as the Machine Protection System (MPS),
enabling it to shut off the beam while a beamline valve is
closing. This functionality protects the valve from potential
damage caused by the beam.

ARCHITECTURE
The ECS vacuum controls architecture is a collection of

software libraries, scripts, widgets and a complement of
software and hardware tools that are fully integrated cross
all layers of the controls stack.

The ECS vacuum controls system design is based on Beck-
hoff embedded controllers and associated industrial hard-
ware and EtherCAT. The system’s software stack includes
the Experimental Physics and Industrial Control System
(EPICS) layer, the Python layer, and the User Interface (UI)
Layer, as illustrated in Fig. 1.

Figure 1: ECS Vacuum Controls Stack.

Device Hardware
The design process of every new vacuum device starts

at the connector. Each vacuum device has a corresponding
custom cable designed for it. These comprehensive cable
design drawings include all the necessary information for
cable fabrication, including specifications for the cable type,
connector type, and fabrication instructions. Additionally,
the cable designs contain pin-outs for the signals needed to
control and monitor each device, as illustrated in Fig. 2.

For every device cable a number of I/O terminals are des-
ignated based on the device type enabling signals readouts

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04

WE1BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

962

Hardware

Control System Infrastructure



Figure 2: Gauge cable design drawing.

and control. Utilizing EPLAN as the CAD tool of choice
for ECS, ECS designed an EPLAN Macro for every device.
The macro consists of the aforementioned details and cable
termination information as shown in Fig. 3.

Figure 3: Gauge macro.
The ECS vacuum controls architecture was built with

strong focus on comprehensive testing. Developing testing
procedures, scripts and tools across all layers of the system
stack was a fundamental objective, aiming to streamline the
deployment process for beamlines and endstations. Conse-
quently, for the majority of devices, a specially designed test
box was designed to simulate the behavior of each respective
device. Standardized test instructions are affixed to each test
box, as illustrated in Fig. 4, facilitating the verification not
only of cable fabrication but also of cable termination. It
is important to note that these tests are currently conducted
manually, as they have not yet been scripted or automated.
Despite this, their implementation has significantly reduced
the time required for cable pin-out and signal verification.

Figure 4: Gauge cable test box.

Custom Library Software
ECS developed its own custom TwinCAT vacuum library

in IEC61131 Structured Text. The library is designed with

a modular structure, incorporating fundamental operational
functionalities and safety interlock logic for each device
within a single function block. This approach ensures the
encapsulation of logic alongside data variables, bundling
them together as a cohesive unit. As a result, the logic,
data variables, and I/Os are consolidated and safeguarded
from external modifications in the production Programmable
Logic Controller (PLC) [1], as shown in Fig. 5.

Figure 5: Gauge library function block.

Logging
In addition to the basic operational functionality and in-

terlock logic, the library code integrates a comprehensive
logging function. This feature enables the logging of mes-
sages at every PLC cycle, capturing essential information
regarding device state changes, user actions, and interlock
events within the logged messages, as shown in Fig. 6. These
log messages are sent through a Logstash and ElasticSearch-
based system [2] and can be viewed on Grafana.

Figure 6: Example of logged messages.

Unit Tests
The library also incorporates a suite of tests based on

tcUnit, a unit test type of framework designed for Beckhoff’s
TwinCAT 3 development environment. It comprises a testing
library that can be seamlessly integrated into any existing
TwinCAT 3 project [3]. Multiple tests are developed for
each function block, guaranteeing the proper functionality
of any released library code prior to production. These tests
additionally ensure that subsequent modifications to any
code components or function block do not break the logic
or introduce any bugs. Illustrated in Fig. 7 are test outputs.

Figure 7: Test suite.

Simulator Library
With a strong emphasis on testing during development

and the reduction of deployment time in production, ECS de-
veloped it’s own TwinCAT vacuum simulator library. Each

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04

Hardware

Control System Infrastructure

WE1BCO04

963

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



device type in the vacuum library has corresponding simu-
lation function block in the simulation library that emulates
the device’s functionality with the I/O definition inverted [4].
By leveraging EtherCAT simulation, the project’s EtherCAT
features are replicated on the simulation computer or PLC
without the need for additional configuration.

An entire beamline vacuum project code, encompassing
control logic and I/O mapping, can be tested, extending
all the way up to the User Interface (UI), even before the
procurement of any vacuum devices or I/O terminals.

EPICS Interface
EPICS interface is established through two ways. EPICS

Input/Output Controllers (IOC) communicating with the
PLCs directly; and EPICS device drivers connected directly
to the device controller.

The EPICS-PLC communication is established via Au-
tomation Device Specification (ADS) communication proto-
col achieved via Ethernet connection. The custom vacuum
library implements a standard EPICS interface, achieved
though TwinCAT pragmas. TwinCAT natively supports a
number of pragma attributes. The vacuum library uses a
SLAC-defined Pytmc attribute to tag variables and data struc-
tures in the PLC code. The Pytmc tool automatically gener-
ates the Database (DB) records [5]. Additionally, a special
SLAC built ADS-Deploy tool generates a templated IOC.

Additionally, a number of Templated IOCs have been de-
veloped for other device controllers, providing access to ad-
ditional configuration variables and device meta-information
through EPICS. Most of these IOCs communicate via
StreamDevice or Modbus.

User Interface
The User Interface (UI) generally falls into two categories:

custom overview screens and detailed engineering screens.
The custom overview screens are created using the PyDM

Widgets library, which is based on PyQt and comprises a col-
lection of symbol widgets. Each device widget is composed
of an icon representing the device, a readback and control
panel [6]. A unique widget, that matches the conventions of
the vacuum schematics drawing, is created for every vacuum
device group. A collection of these widgets and their ar-
rangement constitutes a custom overview screen. Using the
PyDm Designer, these vacuum widgets can be conveniently
dragged and dropped to make the a user interface screen.
Furthermore, A global style-sheet is used to customize the
appear ace of these widgets based on the values of the Pro-
cess Variables (PVs) attached to that specific widget. Figure 8
shows an example of a custom vacuum screen.

Detailed screens, also referred to as engineering screens,
shown in Fig. 9, are automatically generated. Each vacuum
device group has a corresponding ophyd object. A library
of LCLS-specific ophyd object device classes, also known
as pcdsdevices, has been developed for the various vacuum
devices [7]. These Ophyd objects are utilized by Typhos to
automatically generate these screens [8].

Figure 8: Custom Vacuum Screen.

Figure 9: Engineering Screen.

Configuration Scripts
Custom scripts were developed for certain specific devices

to simplify the initial configuration setup process. These
scripts enable the team to promptly apply the necessary
compatible configurations to each device and/or controller,
ensuring timely deployment. Some of these scripts generate
report files with the device serial numbers for documentation
and record keeping purposes.

INTERFACE WITH OTHER SUBSYSTEMS
Within the vacuum library, a crucial feature is the interface

and communication between the vacuum control systems
and other subsystems, such as motion systems that controls
all diagnostics components, as well as the Preemptive Ma-
chine Protection System (PMPS). The PMPS protects var-
ious beamline components and experiment devices from
damage caused by XFEL photon x-ray beam [9].

In certain scenarios, a motion device may need to pass
through a vacuum valve. To enable this safely, specific inter-
lock logic is implemented to communicate with the motion
system, granting permission to actuate the valve based on
the position of the stage. This communication is established
through EtherCAT between both subsystems.

Furthermore, in many cases, a beamline gate valve must
fault the beam before it enters the beam path to prevent
any damage to the valve. To achieve this, an interface with
the PMPS system is established, incorporating PMPS logic
within the valve function block. This logic preemptively
awaits the appropriate beam conditions before the valve is
closed. Notably, in this specific scenario, this logic sequence
is only executed when the valve is instructed to close by the
operator and not in the case of an interlock triggered by a
vacuum event. In the event of a vacuum-related interlock,
the vacuum controls system faults the beam through direct
interface with the Machine Protection System (MPS). That
sequence is as illustrated in Fig. 10.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04

WE1BCO04

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

964

Hardware

Control System Infrastructure



Figure 10: Sequence diagram of subystem-interface.

STANDARDIZATION
Another key goal of the new vacuum controls system was

to establish standardization. To achieve this, a Supported
Device List (SDL) was created, outlining all the vacuum
gauges, pumps, controllers, and valves that are fully sup-
ported by the vacuum controls architecture. Additionally,
vacuum design templates were developed, providing archi-
tecture diagrams for various systems that detail all devices,
their expected arrangements, interlock logic, and the current
LCLS facility-wide setpoints.

The SDL currently includes over 60 devices, including 24
gauges and gauge controllers, 26 pumps and their controller
such as turbo pumps, ion pumps and roughing pumps, as
well as over 10 different types of valves including pneumatic,
electromagnetic, motorized valves, among others.

The following tables [Table 1] and [Table 2] present some
of the specifications of the vacuum controls system:

Table 1: Specifications

Specification Value

Typical min. measurable pressure 5 × 10−10 Torr
Specialized min. measurable pressure 1.5 × 10−12 Torr
Reaction time of fast shutter system 500 µs-100 ms
Typical pressure measurement delay 120 ms

Table 2: Digital-to-Analog Conversion

DAC Bits Nominal Range Unit/Bit Conversion Time

12 0 V-10V 2.44 mV 0.625 ms
16 −10 V-10V 327 µV 50 µs
16 4 mA-20mA 1.2 µA 50 µs

CONCLUSION
This architecture has been successfully deployed for the

LCLS-II project, particularly in the Electron Beam Dump

(EBD) and Front End Enclosure (FEE), and has been reused
for the Soft-Xray hutches: the Time resolved atomic, Molec-
ular and Optical instrument (TMO), the Resonant Inelastic
X-ray Scattering instrument (RIXS) and the Tender X-Ray
Instrument (TXI). It was designed to influence all phases of
the vacuum system’s lifecycle, from design to installation
and checkouts, and was intended to be reusable by subse-
quent projects and third-party integrators. The entire archi-
tecture of SDL, templates, software and hardware designs,
and tools is meant to enable the straightforward delivery of
vacuum controls systems where no additional design work
is necessary, only integration and deployment efforts.

ACKNOWLEDGEMENTS
The Experiment Controls Architecture as it stands now,

is culmination of years team efforts of the entire ECS team,
achieved through close coordination with our stakeholders.
Jing Yin made numerous contributions providing essential
reviews of the entire architecture and library code, and took
over the vacuum library development beyond the LCLS-II
project. Ken Lauer developed Pytmc and the ADS-deploy
tool that enabled the automation of EPICS IOC deployment,
and developed the logging system. Zachary Lentz providing
essential guidance and reviews to the ophyd vacuum device
library. Additionally, Hugo Slepicka was responsible for the
development the PyDM vacuum widget library.

REFERENCES
[1] Experiment controls vacuum system twincat library for LCLS-

II, https://github.com/pcdshub/lcls-twincat-
vacuum/releases/tag/v2.3.0

[2] K. Lauer, “Centralized logging and alerts for EPICS-based
control systems with logstash and grafana”, presented at
ICALEPCS’23, Cape Town, South Africa, 2023, paper TH-
PDP089, this conference.

[3] TcUnit, https://github.com/pcdshub/lcls-twincat-
pmps/releases/tag/v2.2.1

[4] Experiment controls vacuum system simulator twincat li-
brary for LCLS-II, https://github.com/pcdshub/lcls-
twincat-vacuum-system-simulator

[5] pytmc, https://github.com/pcdshub/pytmc
[6] Vacuum Widgets, https://pcdshub.github.io/
pcdswidgets/master/vacuum.html

[7] pcdsdevices, https://pcdshub.github.io/
pcdsdevices/v8.1.0/

[8] Typhos, https://pcdshub.github.io/typhos/v3.0.
0/

[9] A. Wallace, “The LCLS-II experiment controls preemptive ma-
chine protection system”, presented at ICALEPCS’23, Cape
Town, South Africa, 2023, paper TUPDP129, this conference.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-WE1BCO04

Hardware

Control System Infrastructure

WE1BCO04

965

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


