
PHOEBUS TOOLS AND SERVICES
K. Shroff, Brookhaven National Laboratory, Upton, NY, USA

R. Lange, ITER Organization, St. Paul lez Durance, France
T. Ford, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

G. Weiss, European Spallation Source ERIC, Lund, Sweden
K. Kasemir, Oak Ridge National Laboratory, Oak Ridge, TN, USA

T. Ashwarya, FRIB, East Lansing, MI, USA

Abstract
The Phoebus toolkit consists of a variety of control sys-

tem applications providing user interfaces to control sys-
tems and middle-layer services. Phoebus is the latest incar-
nation of Control System Studio (CS-Studio), which has
been redesigned replacing the underlying Eclipse RCP
framework with standard Java alternatives like SPI, prefer-
ences, etc. Additionally, the GUI toolkit was switched
from SWT to JavaFX. This new architecture has not only
simplified the development process while preserving the
extensible and pluggable aspects of RCP, but also im-
proved the performance and reliability of the entire toolkit.

The Phoebus technology stack includes a set of middle-
layer services that provide functionality like archiving, cre-
ating and restoring system snapshots, consolidating and or-
ganizing alarms, user logging, name lookup, etc. Designed
around modern and widely used web and storage technol-
ogies like Spring Boot, Elasticsearch, MongoDB, Kafka,
the Phoebus middle-layer services are thin, scalable, and
can be easily incorporated in CI/CD pipelines. The clients
in Phoebus leverage the toolkit's integration features, in-
cluding common interfaces and utility services like adapter
and selection, to provide users with a seamless experience
when interacting with multiple services and control sys-
tems.

MOTIVATION
The workflows of operators, engineers, and scientists in-

teracting with control systems like EPICS [1] often involve
interacting with multiple applications, each designed for
specific use cases. Some applications are used to display
real-time data from various signals, some visualize histor-
ical data or consolidated alarms, while others provide a set
of operations to write directly to the control system or trig-
ger actions in middle-layer services, such as setting prede-
fined values from a snapshot.

Phoebus/Control System Studio (CSS) [2] was devel-
oped to streamline these workflows by offering a suite of
integrated applications and a framework that simplifies the
development of such applications. For end-users, this
translates to a collection of applications that are easy to
navigate between, where data can be seamlessly trans-
ferred from one application to another, ensuring a con-
sistent user experience. For developers, CSS provides a
framework for creating applications that seamlessly

integrate into this ecosystem without requiring tight de-
pendencies on other applications. It also supports modules
that offer access to shared and optimized resources, such
as connections to EPICS Process Variables (PVs), REST
clients, and more.

Stepping into the Sun
The initial incarnation of Control System Studio (CSS)

was built on top of the Eclipse Rich Client Platform (RCP)
which provided a great foundation, offering a plethora of
essential features required for building extensible, plugga-
ble applications. Over time, most of the core functionalities
and capabilities originally provided by the Eclipse RCP
framework found their way into the standard Java Devel-
opment Kit (JDK) library itself. The incorporation of these
Eclipse RCP features into the JDK introduced an oppor-
tunity to simplify the application development by allowing
developers to leverage the standardized Java library, and a
more cohesive and streamlined development process that
comes with it. This transition was further accelerated by
the increasing complexity of the Eclipse RCP framework,
which prompted us to embrace the native Java ecosystem
for building Phoebus as a modern, efficient, and maintain-
able application.

PHOEBUS ARCHITECTURE
Java Service Provider Interface

Phoebus/CSS is employed across diverse international
scientific and industrial setups, each with its unique re-
quirements. Hence, enabling each site to curate customized
products comprising relevant applications and tools within
their control environment is crucial. Equally important is
Phoebus's seamless integration with existing software
stacks.

Phoebus facilitates this adaptability through a list of Ser-
vice Provider Interfaces (SPIs) for contributing applica-
tions. Java SPI is a mechanism to modularize a software
framework. In the case of Phoebus, SPI allows applications
to register for file extensions, contribute menu or toolbar
entries, offer data sources or access to a site-specific log-
book. To add a new application, one simply needs to pro-
vide an implementation of the app SPI and include it in the
classpath. This approach encourages the contribution of
new applications and simplifies the creation of site-specific
products tailored to each site's specific needs.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08

TUSDSC08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

944

Software

User Interfaces & User Experience

Figure 1: Phoebus Architecture.

Furthermore, Phoebus offers SPIs for extending func-
tionality, such as adding actions to context menus,into a
site's existing control stack. These SPIs cover a range of
functions, including support for different data menus,
toolbars, and more. Additionally, there are SPIs designed
for integrating Phoebus applications seamlessly into a site's
existing control stack. These SPIs cover a range of func-
tions, including support for different data sources and con-
trol protocols, as well as integration with site-specific ser-
vices like logbooks and archivers.

Phoebus Core Libraries and Service
The Phoebus framework (Fig. 2) simplifies the develop-

ment of user applications by offering a set of core modules
that provide solutions for various aspects of application de-
velopment. These core modules encompass several key
functionalities.

One of the core modules offers common UI elements
that can be easily integrated into applications, ensuring a
consistent and user-friendly experience. Another core
module focuses on data processing pipelines, allowing de-
velopers to efficiently manipulate and transform data from
various sources. Additionally, Phoebus includes multi-
threading and job scheduling services, ensuring that tasks
are executed in a controlled and organized manner.

Phoebus also incorporates essential core libraries, such
as Core-PV and EPICS VType. These libraries simplify
application development by providing support for commu-
nication over various protocols and standardized abstrac-
tions for mapping different protocol messages and data
types, reducing complexity.

The framework includes formula functions, that enables
users to define pipelines for processing values from data
sources like Channel Access (CA) or PVAccess (PVA).
Importantly, these operations are executed efficiently off
the UI thread, enhancing the responsiveness of UI applica-
tions. The core framework also offers services for

scheduling and managing jobs, along with the associated
execution thread pools.

Additionally, the framework includes a Selection Pro-
vider and Adapter Framework that facilitates the mapping
of data types between different applications. This function-
ality enables seamless data exchange between applications
without creating rigid dependencies. Adapter Factories
within this framework allow developers to define how se-
lections in their application can be mapped to other data
types, such as log entries or process variables, without in-
troducing direct dependencies. This can be achieved by
registering adapter implementations using Java Service
Provider Interface (SPI).

In summary, the Phoebus framework, as shown in Fig. 1,
provides a comprehensive set of tools and core libraries
that empower developers to create applications efficiently.
These modules enhance the development process by ensur-
ing consistent UI elements, efficient data processing, re-
sponsive multithreading, and flexible data mapping be-
tween applications while minimizing dependencies.

PHOEBUS APPLICATIONS
A group of applications for interacting with control sys-

tems and middle layer services.

Display Builder
The Display Builder combines an interactive editor for

creating control system displays with a runtime to execute
them [3]. It offers a large number of display widgets, in-
cluding basic graphics (labels, rectangles,..), widgets that
monitor the value of a PV (text updates, LED-type indica-
tors, meters, plots, …), widgets to control the value of a PV
(text entry, slider, buttons, …), and widgets to aid in the
layout and organization of displays (embedded displays,
groups, tabs, …). Widgets have been designed such that
they can ideally be used “as is” with little customization.
For example, a “Text Update” widget only needs to be con-
figured with a PV name to then display the value of that
PV combined with units, appropriate numeric precision,
and alarms will be indicated via an alarm-sensitive border.
If necessary, many visual and behavioural aspects of each
widget can be adjusted via a multitude of widget proper-
ties. There is also a scripting interface which offers access
to the complete Phoebus API, but its use is reserved for ad-
vanced users who are familiar with the API and who are
also prepared to then maintain these scripts.

The tool can auto-convert displays from other EPICS
display tools (EDM, MEDM, BOY), and the converted dis-
plays tend to require very little manual adjustments as long
as the original displays also contained minimal customiza-
tions. The XML-based “*.bob” file format of the Display
Builder was designed to me minimalistic and generic, an-
ticipating the need to eventually use them with another
generation of display tools, since user interface tools con-
tinue to evolve over time. Many “*.bob” files and in fact
already be represented in a separately developed web
runtime [4].

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08

Software

User Interfaces & User Experience

TUSDSC08

945

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 2: Phoebus Tools and Services Software Ecosystem Overview.

Data Browser
The Data Browser is a trending tool for plotting the val-

ues of PVs over time. It supports SPI-based archive data
providers, currently including the EPICS Archive Appli-
ance as well as RDB-based history stores and Time-
scaleDB.

PV Utilities
Several tools support the introspection of control system

PVs. Probe is a tool that displays all the information pro-
vided by a PV. The PV Table displays value, time stamp
and alarm information for a list of PVs, and offers a basic
save, compare, restore functionality. The PV Tree can dis-
play the hierarchy of input links in EPICS records.

Alarm User Interfaces
Every EPICS PV provides alarm information, and most

client tools will by default indicate the alarm state via for
example an alarm-sensitive border in live displays. A se-
lected number of alarms, however, should be brought to
operator attention even if they are not on a currently open
display because these alarms can assist operators in their
task of efficiently operating the facility [5]. The alarm user
interface includes an “Area Panel” high-level overview of

the overall alarm state, an “Alarm Table” list of current
alarms, an “Annunciator” for voice representation of new
alarms, and an “Alarm Tree” for viewing and editing the
hierarchical alarm configuration.

Channel Finder Clients
Valid PV names tend to be difficult to memorize for mul-

tiple reasons. To help users to uniquely determine a valid
PV name, the Channel Finder clients provide a case-insen-
sitive search tool using substrings of the full name. Search
results may include additional meta-data maintained in the
Channel Finder service, like IOC name, IOC hostname, ad-
dress and port, current PV status, record type and IOC de-
veloper identity.

Save and Restore User Interface
The save-and-restore application is a general-purpose

tool providing means to save a user-defined set of PV val-
ues to a remote service. Such snapshot data can at a later
point be retrieved from the service and written back in or-
der to restore a subsystem to a known state, or to quickly
switch configurations. Users may change the PV values of
a snapshot (e.g., using a scaling factor) prior to the restore
operation. Multiple snapshots can be combined to facilitate
a restore operation on a larger set of PVs.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08

TUSDSC08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

946

Software

User Interfaces & User Experience

Logbook
Several sites use an online logbook to record operational

issues and progress. While several sites have adopted the
Olog system [6], others rely on a site-specific tool. Phoebus
contains a pluggable framework which allows applications
to create and view log entries to several different
implementations of Logbook services.

PHOEBUS MIDDLE LAYER SERVICES
These services adhere to the principles of the micro-

services architecture, exhibiting modularity with each ser-
vice possessing a clearly defined scope and service APIs.
This approach enables the creation of lightweight, special-
ized services, avoiding the need for complex, resource-in-
tensive ones. Clients within the Phoebus framework can
readily leverage this integrated ecosystem to deliver users
a smoother and more seamless experience.

Alarm Services
Alarm Server The alarm server provides the core

alarm system functionality of monitoring a configurable
list of PVs and notifying operators via the alarm user inter-
face of new, pending and acknowledged alarms.

Alarm Logger In the Alarm Logger, data can serve a
dual purpose: it not only provides a historical timeline of
alarms and associated operator actions, like acknowledge-
ments, but also acts as a foundation for generating valuable
statistics. These statistics are instrumental in identifying
noisy alarms or establishing correlations among multiple
alarms over time. This chronological information is pivotal
for optimizing the alarm configuration, enabling more ef-
ficient and effective alarm management.

Alarm Configuration Manager The alarm configu-
ration manager keeps a history of changes to the alarm con-
figuration, allowing system administrators to track changes
and optionally restore older configuration snapshots.

Phoebus Save and Restore
Snapshots and other save-and-restore data objects are

persisted by this service, offering a REST API over
HTTP(S). Backed by Elasticsearch it offers powerful and
efficient search capabilities to locate snapshots based on
meta-data such as snapshot name, date, user identity and
user-defined tags.

Phoebus Olog
In its most recent incarnation, Phoebus Olog is an online

logbook service which relies on Elasticsearch for persis-
tence of log entries, and Mongodb for attachments. Clients
may create and access data through a REST API, which
includes search based on meta-data and natural language
search on the contents of the log entry.

The logbook service offers a range of clients to cater to
various user needs. These include an integrated client
within the Phoebus framework, ensuring seamless access
from other Phoebus applications. Additionally, there is an
HTML/JavaScript client designed for web-based access,

enhancing accessibility. Furthermore, dedicated clients
with specific functionality are available for smartphones,
delivering optimized experiences on mobile devices.

Channel Finder
The "Channel Finder" is a simple directory service [7].

Its core purpose is to address the challenge of organizing
and accessing channel names within the flat namespace of
the EPICS Channel Access protocol. One of its standout
features is its "query-by-functionality" approach, allowing
users to efficiently locate channels based on specific crite-
ria. Moreover, with the use of tags and properties, Channel
Finder enabled the construction of hierarchical views
within the EPICS name space. With applications spanning
from high-level physics to data management and more,
Channel Finder plays a vital role in enhancing the accessi-
bility, flexibility, and efficiency of EPICS control system
operations.

NEXT STEPS AND FUTURE PLANS
Backward and Forward Compatibility The frame-

work is designed to embrace both backward and forward
compatibility, acknowledging the ever-evolving landscape
of software technology and computer graphics.

Migration Path and Backward Compatibility
The framework aims to provide backward compatibility,

recognizing the importance of preserving legacy content
and ensuring a smooth transition for users [8]. To achieve
this, the Display Builder allows for the import of file for-
mats from older EPICS display tools. This approach guar-
antees that content created using previous tools remains ac-
cessible and functional within the new framework.

Forward Compatibility and Adaptability
Anticipating future control system tools and technologi-

cal advancements, the framework introduces new file for-
mats with a minimalistic and generic design. These formats
are purposefully crafted to simplify the adoption of upcom-
ing tools while maintaining compatibility. Moreover, the
middle layer services are underpinned by simple, technol-
ogy-agnostic APIs. This design choice extends the longev-
ity of client support. Even in cases where significant
backend changes are made, such as transitioning storage
solutions, Phoebus clients remain unaffected. This com-
mitment to forward compatibility ensures that the frame-
work can seamlessly adapt to changes and innovations in
the control system landscape.

Track EPICS7 Upgrades and New Features
The current Java implementation of the PV Access pro-

tocol (core-pva) that has been developed within the Phoe-
bus project continues to track the ongoing EPICS 7
changes. For example, we recently added support for IPv6
and are involved in adding support for secure communica-
tion via SSL/TLS sockets.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08

Software

User Interfaces & User Experience

TUSDSC08

947

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

CONCLUSION
Phoebus is the culmination of decades of experience and

expertise derived from the CS-Studio collaboration. It's
rooted in a profound understanding of the control system
community's needs.

This comprehensive ecosystem, as seen in Fig. 2, of con-
trol system tools empowers operators, engineers, and sci-
entist to streamline workflows. From alarm detection to in-
spections of alarm details, viewing historical data of asso-
ciated PVs, issue resolution, and meticulous documenta-
tion, Phoebus provides an all-encompassing solution.

ACKNOWLEDGEMENTS
The Phoebus update, initiated in 2017, represents the

evolution of CS-Studio, a project that has been in develop-
ment since 2006. Throughout this extensive timeframe, nu-
merous individuals have made significant contributions to
its growth and success. While the authors of this paper rep-
resent only some of the currently active developers, we ex-
tend our sincere thanks to the many others who have con-
tributed.

This prolonged journey since 2006 underscores the en-
during nature of this project. Rather than allowing
CSS/Eclipse to fade away, we have undertaken the task of
porting it to a new platform which has been designed with
adaptability in mind. This commitment to longevity en-
sures that the project remains robust, adaptable, and ready
for the future.

REFERENCES
[1] EPICS Base releases,

https://epics-controls.org/resources-and-sup-
port/base/epics-7/

[2] Phoebus, http://www.phoebus.org
[3] K.-U. Kasemir and M. L. Grodowitz, “CS-Studio Display

Builder”, in Proc. ICALEPCS'17, Barcelona, Spain, Oct.
2017, pp. 1978-1981.
doi:10.18429/JACoW-ICALEPCS2017-THSH303

[4] Display Builder Web Runtime,
 https://github.com/ornl-epics/dbwr/

[5] K.-U. Kasemir, “CS-Studio Alarm System Based on Kafka”,
in Proc. ICALEPCS'19, New York, NY, USA, Oct. 2019, pp.
1511.
doi:10.18429/JACoW-ICALEPCS2019-WESH2001

[6] K. Shroff, and G. Weiss, “Phoebus Olog”, EPICS Spring Col-
laboration Meeting 2021

[7] K. Shroff, K. Kasemir, T. Ford, M. Davidsaver, G. Weiss, and
R. Lange, “ChannelFinder”, EPICS Spring Collaboration
Meeting 2023

[8] T. Ashwarya et al., “Upgrading and Adapting to CS-Studio
Phoebus at Facility for Rare Isotope Beams”, presented at
ICALEPCS 2023, Cape Town, South Africa, Oct. 2023, paper
TUMBCMO11, this conference

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC08

TUSDSC08

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

948

Software

User Interfaces & User Experience

