
INTEGRATING TOOLS TO AID THE AUTOMATION OF PLC
DEVELOPMENT WITHIN THE TwinCAT ENVIRONMENT

N. Mashayekh∗, B. Baranasic, M. Bueno, T. Freyermuth, P. Gessler, S. T. Huynh, N. Jardón Bueno,
J. Tolkiehn, L. Zanellatto, European X-Ray Free-Electron Laser, Schenefeld, Germany

Abstract

Within the myriad of day to day activities, a consistent
and standardised code base can be hard to achieve, especially
when a diverse array of developers across different fields are
involved. By creating tools and wizards, it becomes possible
to guide the developer and/or user through many of the devel-
opment and generic tasks associated with a Programmable
Logic Controller (PLC).

At the European X-Ray Free Electron Laser Facility (Eu-
XFEL), we have striven to achieve structure and consistency
within the PLC framework through the use of C# tools which
are embedded into the TwinCAT environment (Visual Stu-
dio) as Extensions. These tools aid PLC development and
deployment, and provide a clean and consistent way to de-
velop, configure and integrate code from the hardware level,
across to the Supervisory Control And Data Acquisition
(SCADA) system.

Keywords: PLC, TwinCAT, C#, software tools, extension
development

INTRODUCTION

Whilst there were tools [1] previously developed in order
to aid Programmable Logic Controller (PLC) project genera-
tion at the European X-Ray Free-Electron Laser (EuXFEL),
overtime, these tools became harder to manage. Many of
the tools were developed in an array of programming lan-
guages, and require the PLC developers to become adept in
multiple Integrated Development Environment (IDE) and
languages. In turn, in order to enhance or add to an existing
tool or function, edits would have had to be made across the
multiple applications to ensure consistency. This approach
can work within a diverse and well integrated team, however,
also caused bottle necks and had a high dependency on all
of the tools being kept up-to-date. This constriction was
highlighted as an area which could definitely be improved
upon.

A new approach was envisioned where all of the function
previously being performed either manually, or via some
means of automation, was collated together into a Single
Point of Contact (SPoC). Provided with the backdrop of
the TwinCAT environment, it was a logical step to build
upon this platform by integrating this new functionality and
interface into TwinCAT itself via the means of Visual Studio
extensions.

∗ navid.mashayekh@xfel.eu

THE NEED FOR TOOLS AND WIZARDS
TwinCAT’s integration with Visual Studio makes it conve-

nient to combine Visual Studio extensions with the TwinCAT
Automation Interface library. This combination is highly
beneficial for automated PLC project generation, code injec-
tion, and hardware linking. Visual Studio extensions enable
custom tools and workflows that seamlessly integrate into the
TwinCAT environment, while the TwinCAT Automation In-
terface library provides programmatic access to TwinCAT’s
features; allowing for the automation of tasks and the adapta-
tion of useful features associated with modern programming
languages. Together, these tools enhance productivity and
reduce the need for switching between different applications
whilst reducing the potential for errors within automation
workflows at EuXFEL.

VISUAL STUDIO EXTENSIONS
A solid foundation provides the ideal canvas upon which

to develop auxiliary tools. By utilising Visual Studio exten-
sions within the realm of C#, it becomes feasible to import
an in-house configuration seamlessly and to also dynami-
cally modify both the project node, and the hardware node
of the project in an adhoc manner.

This capability enables developers to make on-the-fly
adjustments and closely monitor the success or failure of
each step throughout the process. Consequently, this real-
time feedback loop facilitates efficient and flexible project
management, allowing for swift adaptation to changing re-
quirements in addition to a more streamlined development
process. Also in response to TwinCAT’s lack of support
for generic data types, developers can create Visual Studio
extensions as a workaround to generate duplicated function
blocks (Fig. 1) for different data types (Fig. 2).

Figure 1: List implementation for multiple interfaces.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC03

General

Device Control

TUSDSC03

925

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 2: A list of all available interfaces created by user.

These extensions enable automation of the code genera-
tion process by allowing developers to define templates that
can be customized for specific data types. When invoked,
the extension generates multiple copies of function blocks
with the necessary modifications to accommodate different
data types, effectively emulating generic functionality. This
approach streamlines the development process, reduces code
duplication, and ensures consistency while working within
the constraints of TwinCAT’s limitations.

Developing Extensions
Developers can utilize the Visual Studio Extensibility

(VSIX) [2] project template in Visual Studio to create ex-
tensions. There are multiple alternatives to customise and
enhance the functionality of Visual Studio to their specific
needs. Amongst all of the available customisations, the tool
window and toolbar button are two which are noteworthy.

A tool window is a dockable window in Visual Studio
that can host various controls and components, offering a
customized workspace within the Visual Studio. To create a
tool window, typically a Windows Presentation Foundation
(WPF) user interface is defined [3] which implements the
necessary logic to handle user interactions. Toolbar buttons
on the other hand, are UI elements placed on toolbars within
Visual Studio. These buttons trigger specific actions or com-
mands when clicked, therefore they are suited for simpler
actions which do not need complex user interface.

The implemented Visual Studio extensions for TwinCAT
are structured into three distinct subsets (Fig. 3). Encap-
sulation and Library Handling, core logic, and lastly, user
interface and panels.

Encapsulation and Library Handling In the first sub-
set, the handling of the TwinCAT3 Automation Interface
Library [4] is performed, in addition to the the encapsula-
tion of the data to a new model format. This ensures that a
streamlined and structured flow of data is adhered to. This

Figure 3: Design Structure.

foundational layer acts as the backbone, providing a reliable
interface between the extension developed and to TwinCAT’s
core functionalities.

Core Logic The second subset contains the core logic
responsible for driving the various actions and features of
the extension. By keeping this logic separate, we maintain a
clean separation of concerns, making the code base modular
and adaptable to changes. One example of this includes the
helper classes to parse EPLAN or ESI files.

User Interface and Panels Lastly, the third subset fo-
cuses on the user interface and panels, providing a polished
and intuitive experience for users. Merging core logic and
user interface into a simple toolbar button interface, can
be an efficient coding practice, minimizing complexity and
improving readability.

This well-organized structure not only enhances the main-
tainability of our code but also sets a solid foundation for
future expansions and feature integrations.

Visual Studio Versioning
Due to the necessity of creating distinct projects to fully

support different versions of Visual Studio can lead to sig-
nificant duplication of effort. As a result of this, a strategic
decision was made. The approach taken is to focus solely on
supporting TcXaeShell v15, which is built on Visual Studio
2017. This decision was made with careful consideration
to optimize development efforts and resources. By concen-

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC03

TUSDSC03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

926

General

Device Control



trating on this specific version, the development team can
avoid the complexities associated with managing multiple
codebases tailored for different Visual Studio versions.

This choice is temporary and pragmatic, intended to
streamline development workflows. It ensures efficiency
and avoids unnecessary duplication until Beckhoff officially
releases a new version of TcXaeShell based on Visual Studio
2022. Once the new version becomes available, the devel-
opment efforts can be expanded to support the latest Visual
Studio iterations, ensuring compatibility with the most up-
to-date technologies while minimizing the complexity and
maintenance challenges associated with managing multiple
codebases simultaneously.

Deployment Process
By the TcXaeShell restrictions where extensions can only

be manually added by copying and pasting files into specific
folders, achieving continuous deployment poses challenges.
The lack of automated deployment mechanisms means up-
dates cannot be pushed seamlessly to other systems. Con-
sequently, for now, we are constrained with implementing
continuous deployment practices.

Once the anticipated update by Beckhoff is released, en-
abling compatibility with Visual Studio 2022, our devel-
opment team plans to initiate an internal extension gallery.
This gallery will serve as a centralized hub where all our
developed extensions will be hosted. With this infrastructure
in place, deploying new releases will become more stream-
lined and efficient. Colleagues will have access to the latest
versions of each extension, ensuring everyone benefits from
the most up-to-date features and improvements. This also
adds a level of consistency across the board.

GENERATION OF PLC CODE USING
EXTENSIONS

Due to the high repetition of code usage within the PLC
code base, the extensions developed are predominately
catered the generation of PLC code, to both adapt and create
new functionality, and to also generate a PLC project, with
all the various libraries embedded and their methods and/or
functions referenced.

Current Extensions
There are two fundamental approaches to generating PLC

code via the Beckhoff Automation Interface. Those that
develop or generate new Program Organization Units (POUs)
to provide new functionality, and those that utilise existing
POUs.

Generating New POUs The first method involves util-
ising predefined templates, where the developer creates a
new POU by modifying keywords within these templates.
This method is considered best practice when creating en-
tirely new POUs and then adding them to the project. This
approach is particularly useful in scenarios where complex

data structures such as lists and dictionaries, or implement-
ing finite state machines are being developed. In such cases,
conventions are generally followed, and similar structures
can be used repeatedly. With the ability to do this via a
toolbar button, developers can initiate the creation of these
objects, input necessary data through a user interface (such
as specifying data types), and have the required POUs gener-
ated, and injected into the project’s appropriate folders and
sub-folders.

Modifying Exisiting POUs On the other hand, the sec-
ond method is more convenient when dealing with existing
POUs. This approach is ideal when developers need to mod-
ify existing POUs by injecting new code lines, instantiating
new function blocks, or making changes in the hardware
tree.

Figure 4: Generating the hardware tree.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC03

General

Device Control

TUSDSC03

927

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



An illustrative example is at EuXFEL, where the hard-
ware layout is designed using EPLAN [5], generating ex-
portable data that can be parsed and converted into the Twin-
CAT hardware tree definition (Fig. 4). Meanwhile, all of
the EtherCAT Slave Information (ESI) files are internally
parsed by the extension to create a comprehensive device
catalog model. Parsing these files involves extracting vital
information about the EtherCAT devices, which is essential
for configuring communication and interaction within the
system. However, this parsing step is both time-consuming
and resource-intensive, consuming significant machine re-
sources during execution.

To optimize performance and conserve resources, the
entire device catalog model, once parsed, is serialized into
JavaScript Object Notation (JSON). This serialized data is
then saved locally on the user’s computer for future use. By
storing the parsed information, the extension avoids the need
to repeat the resource-intensive parsing process each time
the program runs, ensuring a more efficient user experience.

Additionally, to maintain the accuracy of the catalog
model, metadata for all parsed files is generated and saved
alongside the model file. This metadata serves as a refer-
ence, documenting the source and structure of the parsed
data. Importantly, in case a new device is added to the
TwinCAT catalog, the existing models are deleted, and the
extension automatically regenerates the catalog model. This
process ensures that the catalog remains up-to-date, and
accurately reflects the current hardware catalog. Finally
hardware nodes can be created by modifying correspond-
ing parent nodes and adjusting their data using generated
hardware catalog model, ensuring seamless integration of
modifications into the existing project structure.

Future Extensions
Looking ahead, the future promises even more transfor-

mative advancements. By integrating the capability to in-
stall in-house and required external libraries, our extension
aims to create a seamless development experience. Parsing
project configuration data ensures that the extension under-
stands the specific requirements of each project, allowing it
to intelligently utilize these libraries.

The introduction of our brand new framework (Tc-
Zookeeper Suite) design, adds another layer of innovation.
As TcZookeeper Suite is still in progress, it is hoped that the
extensions will be adaptable to the evolving developmental
needs of the facility. Works are currently underway to en-
sure the ability to generate project source code automatically.
This automation drastically reduces the time and effort tra-
ditionally spent on manual coding, enabling a much faster
and error-free development process.

Furthermore, the automatic linking of hardware mapping

adds another level of sophistication. By handling this com-
plex task automatically, our extension ensures that the soft-
ware and hardware components are seamlessly integrated.
This not only reduces the chances of errors but also signifi-
cantly accelerates the overall project development lifecycle.

CONCLUSION
In the realm of TwinCAT development, the evolution of

Visual Studio extensions stands as a beacon of innovation
and efficiency. Through this paper, we explored a meticulous
approach to extension development, emphasizing structured
organization and modular design. Dividing tasks into sub-
sets, such as managing the Beckhoff Automation Interface
Library and intelligently creating or modifying Program
Organization Units (POUs), ensures a streamlined and error-
free coding experience.

With these extensions at their disposal, the TwinCAT
development landscape is poised for a revolutionary change,
marking a new era of efficiency, precision, and creativity in
industrial automation.

ACKNOWLEDGEMENTS
The PLC team and authors of this paper worked closely

with other EuXFEL scientific support groups and acknowl-
edge their continuous efforts, input and cooperation. We
thank the rest of the Electronic and Electrical Engineering
(EEE) group, the Information Technology and Data Man-
agement (ITDM) group and the Controls Software and Data
Analysis groups.

REFERENCES
[1] S.T. Huynh, H. Ali, B. Baranasic, N. Coppola, T. Frey-

ermuth, P. Gessler, et al., “Automatic Generation of PLC
Projects Using Standardized Components and Data Models”,
in Proc. ICALEPCS’19, New York, NY, USA, Oct. 2019, pp.
1532–1537.
doi:10.18429/JACoW-ICALEPCS2019-THAPP01

[2] VSIX Project template, https://learn.microsoft.
com/en-us/visualstudio/extensibility/getting-
started-with-the-vsix-project-template?view=
vs-2022

[3] Extend and customize tool windows, https:
//learn.microsoft.com/en-us/visualstudio/
extensibility/extending-and-customizing-tool-
windows?view=vs-2022

[4] TwinCAT 3 Automation Interface, https://infosys.
beckhoff.com/english.php?content=../content/
1033/tc3_automationinterface/index.html&id=
3954232867334285510

[5] EPLAN, https://www.eplan.de/

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUSDSC03

TUSDSC03

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

928

General

Device Control


