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Abstract
The industrial and medical accelerator industry is an ever-

growing field with advancements in accelerator technology
enabling its adoption for new applications. As the com-
plexity of industrial accelerators grows so does the need for
more sophisticated control systems to regulate their opera-
tion. Moreover, the environment for industrial and medical
accelerators is often harsh and noisy as opposed to the more
controlled environment of a laboratory-based machine. This
environment makes control more challenging. Additionally,
instrumentation for industrial accelerators is limited making
it difficult at times to identify and diagnose problems when
they occur. RadiaSoft has partnered with SLAC to develop
new machine learning methods for control and anomaly de-
tection for industrial accelerators. Our approach is to develop
our methods using simulation models followed by testing on
experimental systems. Here we present initial results using
simulations of a room temperature s-band system.

INTRODUCTION
In recent years machine learning (ML) has been identified

as having the potential for significant impact on the mod-
eling, operation, and control of particle accelerators (e.g.
see [1, 2]). Specifically, in the diagnostics space, there have
been many efforts focused on improving measurement capa-
bilities and detecting faulty instruments. When it comes to
diagnostics, developments for beam position monitors have
been quite ubiquitous over the years. Relatively recently, ML
methods have been utilized to improve optics measurements
from beam position monitor data [3]. Additionally, machine
learning has been used to identify and remove malfunction-
ing beam position monitors in the Large Hadron Collider
(LHC), prior to application of standard optics correction
algorithms [4]. Furthermore, we have developed techniques
for automation of noise removal in BPM data using machine
learning [5]. On the contrary, there is a real dearth of knowl-
edge when it comes to the application of machine learning
for industrial accelerators. Moreover, the developments for
using machine learning to improve RF signal processing
are considerably further behind than other diagnostics in
use at accelerators. The ability to remove noise from RF
measurements would greatly improve our ability to extract
meaningful information from RF systems especially in an
industrial setting.

Machine learning methods such as autoencoders and vari-
ational autoencoders (VAEs) are well established for the
removal of noise from various signals. For VAEs specifi-
cally noise reduction due to the enforcement of a smoothness
condition in the latent-space representation. This feature of
VAEs has been applied to gravitational wave research [6, 7]
and geophysical data [8], for example. Recurrent autoen-

coders have the added advantage of being well suited to
work with data sequences. In this paper we explore the use
of Variational Recurrent Autoencoders (VRAEs) to remove
different power law spectra (colors) of noise from simulated
BPM data in a ring.

Our work utilizes a combination of approaches to under-
stand which is best when considering RF waveform data. Our
work has explored the use of model based approaches such
as Kalman filters and machine learning approaches such as
convolutional neural networks and variational autoencoders.
Here we begin with a review of our data generation model
followed by an analysis of Kalman filters, convolutional au-
toencoders, and variational autoencoders for the removal of
noise from RF signals.

DATA GENERATION
Our data was generated using a RF simulator that repro-

duces waveforms as they would be seen in industrial sys-
tems. Over the past year, RadiaSoft has been developing
a full RF simulation tool that is integrated with EPICS for
the development of new control algorithms, developing IOC
software, and testing user interfaces. The simulator can be
run through various APIs including a command line inter-
face, via a Jupyter notebook, or directly through an EPICS
connection. The simulator is based on a linear circuit model
that takes into account coupling factor, quality factor, fre-
quency, drive amplitude and phase, pulse duration, detuning,
etc. The dynamics of our model are based off of equations
derived here [9–11].

The data were generated by varying the RF pulse char-
acteristics and the cavity characteristics. For the pulse the
length of the pulse was varied from 3 𝜇s to 7.5 𝜇s which is a
reasonable range for industrial accelerator applications oper-
ating at S-Band. Additionally we varied the start time of the
RF pulse in the data window. While we typically don’t ex-
pect the RF pulse to vary in position along the DAQ window
adding in this flexibility will ensure better generalization
when transferring from simulations to measurement.

The RF cavity parameters of interest for this study are 𝑄0
and 𝛽 which were varied over a range of 10,000 to 225,000
for the 𝑄0 and 1 to 3 for 𝛽. The detuning was also varied
within a range of plus minus one half bandwidth, a fairly
typical range seen on industrial systems. In all the parameter
range chosen represents a reasonable range of industrial RF
systems and will allow us to develop simulation based algo-
rithms that should be readily transferable to measurement
when the time arises.

KALMAN FILTERS
First we consider the Kalman filter for noise reduction.

Kalman filters, also referred to as linear quadratic estimators,
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use a liner model to predict the dynamics of a system using
a state estimator and the provided input signal. The model
used id comprised of the 1-D dynamical equations for an
RF cavity derived from an equivalent circuit model. Here
the dynamical variables for the cavity model are given by
Equation 1.

x = [ ℜ(𝑉𝑡)
ℑ(𝑉𝑡)

] u = [ ℜ(𝐼𝑓 𝑤)
ℑ(𝐼𝑓 𝑤) ] y =

⎡
⎢⎢⎢
⎣

ℜ(𝑉𝑡)
ℑ(𝑉𝑡)
ℜ(𝑉𝑟)
ℑ(𝑉𝑟)

⎤
⎥⎥⎥
⎦

(1)

The dynamical equations that describe the system with noise
are given by ẋ = 𝐴x+𝐵u+Γw̃ and y = 𝐶x+𝐷u+ ṽ Here w̃
and ̃v are the noise components that show up in the dynamics
that we wish to remove. The matrices 𝐴, 𝐵, 𝐶, and 𝐷, are
defined by the cavity dynamics model as:

𝐴 = [ −𝜔1/2 Δ𝜔
Δ𝜔 −𝜔1/2

] (2)

𝐵 =
𝑅𝐿𝜔1/2

𝑚 [ 1 0
0 1 ] (3)

𝐶 =
⎡
⎢⎢⎢
⎣

1 0
0 1

1/𝑚 0
0 1/𝑚

⎤
⎥⎥⎥
⎦

(4)

𝐷 = 𝑍0
2

⎡
⎢⎢⎢
⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎥
⎦

(5)

.
This continuous representation can be transformed into

a discrete representation and then used to define an update
formulae that allows us to estimate the system response in
the absence of noise. Additionally as part of the Kalman
filter algorithm we can estimate the covariance matrix for
the system which gives us an uncertainty metric on the pre-
diction in addition to the denoised data. Figure 1 shows
an example waveform result of the Kalman filter. Here we
predict the both the transmitted and reflected signals in both
I and Q domains.

It’s clear that the Kalman filter used in this way has some
reasonable denoising capabilities. Here the output of the
Kalman filter ids shown in blue with the confidence interval
in shaded blue. The ground truth is in Black and Red shows
the noisy signal. Compared with the baseline noisy signal the
Kalman filter does quire good and has no training However
because it relies on the input waveform which also has noise
there is still substantial noise in the output signal.

CONVOLUTIONAL NEURAL NETWORK
We also developed a 1D convolutional autoencoder for

denoising of our waveform data. Convolutional neural net-
works are adept at feature extraction especially in cases
where there is translation invariance. While typical LLRF

signals are time synchronized we explored signal transla-
tions as described above to improve the generality of our
approach. The convolutional network follows a structure
very similar to a U-net which is often used for image seg-
mentation and other image to image learning problems. The
model architecture consisted of 1-D convolutional layers and
max-pooling layers that reduce the feature space down to
a latent space of 10. We then used up-sampling and con-
volutional layers to reconstruct the waveform. The model
was trained using noisy waveform data from our simula-
tor in an unsupervised fashion. That is during training the
model inputs and outputs both contain noise. The mecha-
nism for noise reduction is due to the fact that there is no
information contained in the noise it cannot be modeled by
the latent space and the reconstruction will be noiseless. The
data were tested on an independent dataset. When training
the CNN we treated each waveform as unique to allow the
CNN to learn noise rejection regardless of if the data being
processed is a measured forward, reflected, or probe signal.
This will improve our ability to generalize when considering
data collected on different types of machines where probes
are not always available or traveling wave structures where
the signal envelopes do not follow the normal standing wave
profiles. Figure 2 shows the noisy signal in grey, the model
prediction in green, and the ground truth signal with no noise
in black.

For comparison we see signals from the drive signal, the
reflected signal, and the cavity probe. While generally the
reconstructed signal is closer to the ground truth than the
noisy signal there are cases spurious signals are present in
the reconstructed data (top left for example).

VARIATIONAL RECURRENT
AUTOENCODERS

Next we considered variational recurrent autoencoders,
VRAEs. VRAEs are an excellent tool for data reduction
and noise elimination due to the fact that they enforce a
smoothness criterion in the latent space. This combined
with the fact that the noise cannot propagate through the
latent space as discussed previously makes them a prime
candidate for removing noise from RF signals. Moreover,
by utilizing recurrent layers we can effectively translate time
dynamics to the principle components of the simulation
which will be represented in the latent space.

Our implementation of the VRAE architecture is based
on [12] and uses Long Short-Term Memory (LSTM) units for
both the encoder and decoder. The loss function is composed
of two terms: the Kullback–Leibler divergence [13] — which
acts as a regularization term — and the reconstruction loss.
For the reconstruction loss, mean squared error between
the encoder input and decoder output is used. The VRAE
is trained and tested with each of the waveforms (forward,
reflected, and probe) treated as features for the dataset. The
goal here is that the VRAE will be able to learn a latent
space representation of the waveform data and by extension
the cavity model parameters. This is in contrast to the CNN

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP115

System Modelling

Artificial Intelligence & Machine Learning

TUPDP115

847

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Comparison of the reconstructed waveform from the Kalman filter (red).

which was trained to process one waveform at a time and
is largely learning to remove noise as opposed to a more
generalized representation of the system.

The prediction for the VRE is generally quite a bit better
in terms of the ability to remove noise but the profile of the
reconstructed waveform is not always correct. This is likely
due to the fact that there is some degeneracy in the dataset
due to the relationship between 𝑄 and 𝛽.

COMPARISON
In all three cases the approaches are capable of reducing

noise in the waveform data. Figures 4 and 5 show a direct
comparison between the three approaches and the ground
truth in addition to the original noisy signal. Here we can
see that the CNN consistently does well compared to the
Kalman Filter. The VRAE does quite well on the second
example but does not reconstruct the signal properly for the
first example. The advantage to the Kalman filter is that it
does perform some noise reduction and because it relies on
the physics of the system as opposed to being trained on the
dataset it is less likely to produce spurious signals which can
be seen in the second example using the CNN right before
the cavity turns off.

To evaluate the performance of each technique across the
whole dataset we computed the sum squared error between
the reconstructed signal and the ground trough for each ex-
ample waveform. We then computed a histogram of these
results and compared it to histogram of the sum-squared-
error between noisy signal and the noiseless signal. Figure
6 shows the result of this comparison.

The comparison across the whole test dataset shows that
each method is capable of reducing the noise levels of the
signals. The VRAE does the best job as can be seen by the
prominent spike in the histogram near zero and a significant
reduction in the noise contribution between 0.1 and 0.2. The
CNN and the Kalman filter perform similarly overall with
slightly better noise reduction coming from the CNN.

CONCLUSIONS

We have explored three possible approaches for noise
reduction on industrial RF signals using machine learning.
Specifically we have utilized Kalman filters, convolutional
autoencoders, and variational autoencoders. Our test dataset
was generated using a cavity circuit model that has been well
benchmarked against measured data. While each method
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Figure 2: Comparison between the 1D-CNN reconstruction
(green) of four randomly chosen waveforms and the ground
truth (black) and the noisy signal (gray).

Figure 3: Comparison between the VRAE reconstruction
(red) of four randomly chosen waveforms and the ground
truth (black) and the noisy signal (gray).

has significant noise reduction capabilities, the VRAE is
generally the best tool for this task.
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Figure 4: Reflected power waveform reconstruction using
the Kalman Filter (blue), the 1D-CNN (green) and the VRAE
(red) with the respective errors shown in the inset plot.

Figure 5: Cavity power waveform reconstruction using the
Kalman Filter (blue), the 1D-CNN (green) and the VRAE
(red) with the respective errors shown in the inset plot.

Figure 6: Histogram of the sum-squared-error between the
reconstructed signal and the noiseless signal for the VRAE
(red), 1D-CNN (green), and Kalman filter (blue).
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