
A FLEXIBLE EPICS FRAMEWORK FOR
SAMPLE ALIGNMENT AT NEUTRON BEAMLINES

M. Henderson, J. Edelen∗, M. Kilpatrick, RadiaSoft LLC, Boulder, USA
S. Calder, B. Vacaliuc, ORNL RAD, Oak Ridge, USA

R. D. Gregory, G. Guyotte, C. Hoffmann, B. Krishna, ORNL, Oak Ridge, USA

Abstract
RadiaSoft has developed a flexible front-end framework,

written in Python, for rapidly developing and testing auto-
mated sample alignment IOCs at Oak Ridge National Lab-
oratory. We utilize YAML-formatted configuration files to
construct a thin abstraction layer of custom classes which
provide an internal representation of the external hardware
within a controls system. The abstraction layer employs the
PCASPy and PyEpics libraries in order to serve EPICS pro-
cess variables and respond to read/write requests via Channel
Access, with future developments planned for PV Access
through the P4P library. Our framework allows users to build
a new IOC that has access to information about the sample
environment in addition to user-defined machine learning
models and data processing methods. The IOC monitors for
user inputs, performs user-defined operations on the beam-
line, and reports its status back to the control system. Our
IOCs can be booted from the command line, and we have
developed command line tools for rapidly running and test-
ing alignment processes. These tools can also be accessed
through EPICS GUIs or separate Python scripts. These pro-
ceedings provide an overview of our software structure and
showcases its use at two beamlines at ORNL.

INTRODUCTION
Robust, accessible controls software for beamline sample

environments are a critical need for operators at neutron sci-
ence user facilities like the Spallation Neutron Source (SNS)
and High-Flux Isotope Reactor (HFIR) at Oak Ridge Na-
tional Laboratory (ORNL). Existing input-output controller
(IOC) software and control workflows allow beamline op-
erators to meet the needs of users, but require operators to
expend significant amounts of time and resources on trivial
tasks like sample alignment which make poor use of their
expertise and are good targets for automation. Additionally,
the creation of new workflows or the extension of existing
ones typically require appreciable effort from controls ex-
perts who already experience heavy workloads unrelated
to day-to-day beamline operations at user facilities. To that
end, RadiaSoft has developed rscontrols: a flexible front-end
controls framework, written in Python, for rapidly develop-
ing IOCs with embedded machine learning (ML) models
and other modern automation tools. rscontrols leverages
common configuration tools and a Pythonic API to enhance
user accessibility and is built on existing Python packages
for implementing controls via the EPICS framework.

∗ jedelen@radiasoft.net

SUPPORTING PACKAGES
In addition to supporting broad user accessibility, our

choice to employ Python for the rscontrols framework has
allowed us to take advantage of pre-existing tools for exe-
cuting controls operations through EPICS. For client-side
access to existing networks of EPICS process variables (PVs)
we use the PyEpics package [1], a Python API for the channel
access (CA) protocol within EPICS. For serving new PVs
associated with the rscontrols framework to the network we
use the PCASPy [2] package, a Python API for the Portable
CA Server (PCAS) support module for EPICS.

USER INPUTS
One of the strengths of the rscontrols framework is the

reduced workload placed on users in comparison to pure
EPICS or the Python APIs employed by rscontrols. To create
new IOCs using those tools typically requires significant
development time and the efforts of expert programmers.
Even in the case of Python APIs like PyEpics and PCASPy,
these efforts generally produce IOCs dedicated to specific
processes that therefore feature low levels of reusability. In
contrast, user inputs for rscontrols IOCs have been reduced
to a single configuration file with a human-readable layout
and hooks for control and server processes which take the
form of simple Python functions. This allows new IOCs
to be developed quickly by operators familiar with local
beamline equipment and processes and a basic understanding
of Python scripting.

Configuration Files
The primary user input for an IOC created with rscontrols

is a YAML-formatted configuration file. This file provides a
list of all hardware elements to be abstracted by the software,
including the PVs associated with each element, as well the
available ML models, control processes, and any new PVs
to be served by the IOC (see Appendix).

Controls Process Scripts
One of the most important aspects of rscontrols is its

method of representing user-defined controls processes as
Python functions. A single Python module containing these
functions is specified by the user via the path entry of the
Processes section of a config file. Only processes listed
in the config file are imported for use into the framework,
though functions in the processes module can freely depend
on one another (including functions which do not correspond
to any active processes).

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP113

TUPDP113

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

836

Software

User Interfaces & User Experience



Figure 1: Overview of the rscontrols runtime workflow, including ongoing work with online learning.

Server Logic Scripts
Similar to controls process scripts, units of server logic

are provided to rscontrols by users in the form of Python
functions. Unlike process scripts, the functions in server
logic scripts are more limited in nature as they generally
correspond to EPICS operations for get or put, or to describe
the reaction associated with triggering the PROC field of
PV. Server logic modules can also contain support functions
that don’t get imported but instead are called by primary
functions which do, helping to reduce reproduction of code.

Machine Learning Models
In support of process automation, rscontrols features tools

for deploying trained ML models defined using the Models
section of a configuration file (see Appendix). The entries
needed to define a model are a model type, a path to trained
model weights (stored as an hdf5 file), and a path to any
model hyper-parameters needed to instantiate a member of
the model class (stored as a dictionary of named parame-
ters in a Python “pickle” file). Current development efforts
include work to make model definitions more general and re-
quire fewer input files, while maintaining support for models
implemented with either PyTorch and Tensorflow.

As the first ML-based tasks undertaken by the frame-
work have been in the area of machine vision (see Deploy-
ment & Testing), all currently available models are variants
of UNet [3] segmentation networks, though support for a
broader variety of models is planned. Ultimately, this will
also include non-ML models (some of which, e.g. standard
denoising filters, are currently implemented as processes).

SYSTEM ABSTRACTION & OPERATION
Hardware & Machine Learning Models

Parameters defined in the System section of the user-
provided configuration are used to initialize virtual hard-
ware components in the abstraction layer. Similarly, hyper-
parameter and network weight files listed in the Models sec-

tion are used to load trained ML models. During operation,
elements and models are used in much the same way, being
passed as arguments to controls process and server logic
functions. The main difference between their uses in these
contexts is that hardware elements feature hooks for access-
ing EPICS PVs, whereas models generally feature methods
for processing data (e.g., motor positions or images).

Control Process & Server Logic Hooks

Python scripts provided by users to define control pro-
cesses and server logic function as hooks in the larger pro-
gram. Each function defined in the scripts represents a dis-
tinct unit of activity in the rscontrols framework. Functions
defining processes can be executed through any of the user
interfaces (see the User Interface Tools), at which point the
functions are called and passed their respective input argu-
ments. Server logic functions on the other hand are called
any time the network receives a request for the value(s) of a
served PV (in the case of get functions), or any time a new
value is written to one (in the case of put functions).

Workflow

Given the dynamic and interactive nature of controls soft-
ware, rscontrols was designed with a well-defined workflow
in mind (see Fig. 1). At startup, a new IOC object is initial-
ized and proceeds to read the supplied configuration file and
other user inputs. These inputs are parsed and used to con-
struct the abstraction layer components of the IOC, which
then enters into its main operational loop. Once in operation,
the IOC continuously and asynchronously scans for inputs
from the user via the CLI (if one is running) or the EPICS
interface, as well as changes to the PVs associated with hard-
ware elements. When processes or server operations are
executed, the IOC forwards their inputs (hardware elements,
machine learning models, or combinations of both) to the
appropriate Python functions imported during startup.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP113

Software

User Interfaces & User Experience

TUPDP113

837

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 2: An example GUI interface using CS-Studio for a control system simulated entirely with rscontrols.

USER INTERFACE TOOLS
Command Line Interface

The rscontrols framework is distributed with a command
line interface (CLI) for quick and easy access. The CLI is
initiated using the rscontrols executable installed with the
package and provides direct access to a lists of hardware
elements and control processes, and inputs for process exe-
cution. While many users will prefer to embed rscontrols
functionality into a GUI (or interact directly through EPICS,
for low-level systems), the CLI provides a simple access
point that is always available “out of the box”.

EPICS Interface
Although one purpose of rscontrols is to facilitate the

operation and extension of controls systems by providing an
abstraction layer and UI tools, other purposes include the
automation of controls processes and exposure of processed
data on-network. Since processes and results can also be
exposed by rscontrols as EPICS PVs, users who prefer to
operate strictly through EPICS (e.g., using caget and ca-
put) can do so. This helps to maintain the flexibility of the
framework and extends its usefulness to systems for which
only direct command line access is available but automated
controls are still desirable (such as low memory systems).

GUI Compatability & Support
Since rscontrols operates using EPICS, integration with

GUI applications like Control System Studio (CSS) is
straightforward. The names and properties of controls equip-
ment as well as the names of implemented processes can be
read directly from PVs and used to populate controls screens.
Additionally, tools capable of embedding Python scripts di-
rectly are free to employ rscontrols through the Python API,
allowing entire IOCs to be embedded into displays.

DEPLOYMENT & TESTING
The origin and initial test setting for the rscontrols frame-

work is a collaborative project between RadiaSoft and Oak
Ridge National Laboratory (ORNL) for ML-based stabi-
lization of neutron scattering sample environments. In the
context of that project, rscontrols has so far been deployed to
and tested at two different beamlines: the TOPAZ beamline
at the Spallation Neutron Source (SNS) facility [5] and the
HB2A beamline at the High-Flux Isotop Reactor (HFIR)
facility [4]. Though improvements to these individual de-
ployments are ongoing, early test results for the processes
already implemented have been promising.

Figure 3: Sample images from the TOPAZ beamline at
ORNL before (top) and after (bottom) conducting an auto-
mated alignment process with rscontrols.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP113

TUPDP113

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

838

Software

User Interfaces & User Experience



The first live tests of our controls framework were un-
dertaken at the TOPAZ beamline, where we successfully
ran an automated alignment process (see Fig. 3), in addi-
tion to several preliminary tests with more basic controls.
One challenging aspect of these tests was cooperating with
the existing controls framework at TOPAZ to replace pre-
viously human-in-the-loop portions of the alignment work-
flow. Given the well-established nature of controls systems
at TOPAZ and other beamline facilities, achieving this level
of flexible modularity with rscontrols was one of key goals
for future deployments of the framework.

Unlike TOPAZ, the HB2A beamline previously lacked any
level of controls automation, with all processes being carried
out manually by operators. Controls on the HB2A beam-
line are also implemented using an in-house software called
SPICE, rather than EPICS. To bridge the system with our
EPICS-based software, our collaborators among the controls
group at ORNL developed an interface software for mediat-
ing between network variables used by SPICE and EPICS
PVs. In addition to providing us a means of connecting to
the SPICE-based controls at HB2A using rscontrols, this
bridge software has greatly improved the existing manual
controls workflow at HB2A, including facilitating integra-
tion with CS-Studio GUIs, and is now being deployed on
other instruments at various ORNL facilities.

Figure 4: Neutron camera images of a sample at HB2A
before (top) and after (bottom) denoising with rscontrols.

Enabled by the SPICE-to-EPICS interface software, sev-
eral live tests of rscontrols have now been conducted at
the HB2A beamline. These have included simple tests for
camera connectivity and readout, basic motor controls, and
the deployment of a real-time image denoising process for
the beamline’s diagnostic neutron camera. This denoising
process creates a new PV for denoised image data usable

by both operators or automated controls process, and can
employ either ML- or filter-based algorithms to process the
raw neutron camera images. Due the reliance of alignment
workflows (manual or otherwise) on the diagnostic camera,
and the tendency for the signal-to-noise ratios of neutron
cameras to worsen over time, we anticipate that this function-
ality will be of continued benefit to operators at HB2A. We
are currently exploring the possibility of deploying similar
denoising protocols for other instruments at ORNL facilities
which rely on neutron cameras for diagnostics and controls.

CONCLUSION

We have produced a flexible new framework, rscontrols,
for the rapid production and deployment of EPICS IOCs
with a focus on controls automation. The rscontrols frame-
work achieves a high level of abstraction for maximizing
user accessibility and was developed through live testing on
the TOPAZ and HB2A neutron beamlines at the SNS and
HFIR facilities (respectively) at ORNL. Engaging with oper-
ators at these facilities, we have successfully demonstrated
the automation and streamlining of controls processes like
sample alignment, and have provided extensions to exist-
ing controls and diagnostic data including continuous, live
denoising for neutron camera images.

Although the core source code for rscontrols has reached a
relatively stable state of development, incremental improve-
ments to the framework are ongoing. Whereas previous
development has been focused on the EPICS CA protocol as
it is generally the protocol used at ORNL, the addition of the
PV Access (PVA) protocol to our framework using the P4P
(PVA for Python) library [6] is already well underway. One
of the most important planned improvements to rscontrols
is the integration of uncertainty quantification metrics like
segmentation uncertainty maps, which have already been
tested and served as PVs, with automated alignment and
other controls procedures. Another planned improvement
is the addition of ML models other than UNets, including
non-network ML models like Bayesian processes, as well as
non-ML models for controls such as simple PID controllers.

ACKNOWLEDGEMENTS

This work is supported by the U.S. Department of En-
ergy, Office of Science, Office of Basic Energy Sciences,
SBIR and STTR Program under Award Number(s) DE-
SC0021555.

APPENDIX

The listing below provides excerpts from an example
rscontrols configuration file. The listing includes each of the
possible sections of a configuration file, though in practice
not necessarily all sections must exist. For example, only a
Processes or Server section must exist, not necessarily both.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP113

Software

User Interfaces & User Experience

TUPDP113

839

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



IOC :
protocol : CA
modes : [primary , secondary]

System :
name : Example Beamline
prefix : EXBL

PrimaryCam :
type : Detector
prefix : PCam
modes : [primary]
dimensions : [100, 100]
data_pv : Image

#--------------(break)----------------

Server :
path : server_functions.py
prefix: EXBL
pvs:

PCam:CleanIm :
count: 10000
get:

function: denoise_cam
args:

model: DenoiseUNet
cam: PrimaryCam

put: None

#--------------(break)----------------

Models :

DenoiseUNet:
type : UNet
weights: model.h5
architecture: parameters.pkl

#--------------(break)----------------

Processes :
path : exbl_processes.py

align_sample :
primary:

function : auto_align
args :

model: MaskUNet
cam : PrimaryCam
controls: PrimaryControls

secondary:
function : auto_align
args :

model: MaskUNet
cam : SecondaryCam
controls: SecondaryControls

REFERENCES
[1] M. Newville, TyEpics Documentation,
https://pyepics.github.io/pyepics/

[2] X. Wang, PCASPy Documentation,
https://pcaspy.readthedocs.io/en/latest/

[3] O. Ronneberger, P. Fischer, T. Brox, “U-net: Convolutional
networks for biomedical image segmentation”, MICCAI’15,
vol. 18, no. 3, 2015.
doi:10.48550/arXiv:1505.04597v1

[4] S. Calder et al., “A suite-level review of the neutron powder
diffraction instruments at Oak Ridge National Laboratory”,
Rev. Sci. Instrum., vol. 89,no. 9, p. 092701, Sep. 2018.
doi:10.1063/1.5033906

[5] L. Coates et al., “A suite-level review of the neutron single-
crystal diffraction instruments at Oak Ridge National Labora-
tory”, Rev. Sci. Instrum., vol. 89, no. 9, p. 092802, Sep. 2018.
doi:10.1063/1.5030896

[6] M. Davidsaver, P4P Documentation,
https://mdavidsaver.github.io/p4p/index.html

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP113

TUPDP113

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

840

Software

User Interfaces & User Experience


