
TICKIT: AN EVENT-BASED MULTI-DEVICE
SIMULATION FRAMEWORK

A. Emery, G. O’Donnell, C. Forrester, T. Cobb
Diamond Light Source, Harwell, United Kingdom

Abstract
Tickit is an event-based multi-device simulation frame-

work providing configuration and orchestration of complex
simulations. It was developed at Diamond Light Source in
order to overcome limitations presented to us by some of
our existing hardware simulations. With the Tickit frame-
work, simulations can be addressed using a compositional
approach. It allows devices to be simulated individually
while still maintaining the interconnected behaviour exhib-
ited by their hardware counterparts by modelling the inter-
actions between devices. Devices can be collated into larger
simulated systems providing a layer of simulated hardware
against which to test the full stack of Data Acquisition and
Controls tools.

We aim to use this framework to extend the scope and
improve the interoperability of our simulations; enabling
us to further improve the testing of current systems and
providing a preferential platform to assist in development of
the new Acquisition and Controls tools.

MOTIVATION
Tickit’s development was driven by the desire to simulate

hardware triggered scans. To simulate such scans, multiple
devices need to be able to communicate with one another
and have linked behaviour triggered by events.

There were initial efforts to use Lewis [1], a cycle-driven
hardware simulation framework for isolated devices from
the European Spallation Source (ESS) and the ISIS Neutron
and Muon Source. However, our requirements were not well
matched to the function of this framework. This resulted
in us writing bespoke solutions for our devices that grew
increasingly complicated and verbose. Eventually a decision
was made to develop a framework more appropriately suited
to our needs.

The scans we wish to simulate require use of a Zebra [2],
an event handling system utilising an FPGA from Quantum
Detectors, an Eiger x-ray detector from Dectris, and a PMAC
motion controller from Omron. To support scans of this
nature, we would need to simulate the above devices as well
as numerous motors and the communication between them.
To provide this the framework needed to be:

• Multi device. To simulate a full scan we need to have
many linked devices.

• Event driven. Each device in the system needs to update
only when relevant, either when it changes state or when
a device downstream changes an input to it.

A significant limiting factor in our hardware triggered
scan simulations was the high FPGA frequency. The Zebra
FPGA operates at 50 Mhz [3], a rate unachievable in a time

driven system. Even with the ability to match this rate, using
a time driven approach would drive the system intensely
with the majority of these updates being redundant. As
the simulation progresses, simulation time and real time
would slowly diverge, the rate of which increasing with
added complexity. By using an event driven approach instead
we only need to update each device when there is a relevant
change. This enables the simulation to be run at a slower
overall rate, lagging behind when operations are made, but
then synchronising back to real time when there are periods
of no change.

DESIGN
The resulting framework consists predominantly of two

parts: a scheduler, and components. Components encap-
sulate the simulated devices and their network interfaces,
and the scheduler contains the logic to run the simulation.
Components possess the operational logic for running and
updating the devices they contain, and provide the inter-
face by which the scheduler orchestrates the updating each
device.

All devices possess optional inputs and outputs, which
can be wired together to produce a directed acyclic graph of
dependent devices. This device graphing is determined with
a configuration yaml file which is used to build and run the
simulation. Simple device graphing is presented in Fig. 1.

Figure 1: Device graphing. Wiring the device’s inputs and
outputs forms a directed acyclic graph. The scheduler en-
sures devices are updated in order, such that B is only up-
dated when A has finished, and D is only updated once B
and C have finished.

A summary of the framework’s design and its constituent
parts can be seen in Fig. 2.

The Scheduler
The scheduler orchestrates the running of the simulation.

It contains references to all the components in the simula-
tion and the wiring of all of their inputs and outputs. It is
responsible for routing all the changes through the system
and ensuring time is maintained.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP109

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP109

823

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 2: Summary of the Tickit design. The components host the devices and any adapters used for external communication.
The scheduler keeps simulation time running and updates the components in the simulation when required.

Components
There are currently two types of components available in

Tickit, device components and system components.

Device Components Are the predominant component
type and encapsulate the simulated device and any corre-
sponding adapters. This can be seen in Fig. 3. Devices in a
simulation can be considered directly linked with regards to
inputs and outputs.

Figure 3: Device component. These components host a
device and any adapters that are assigned to the device.

System Components Are a component type that nest a
Tickit simulation within them. They contain a set of com-
ponents, a nested scheduler for routing the updates through
the components, and an optional adapter for maintaining
an overview of the nested system. This is demonstrated in
Fig. 4.

Figure 4: System components. These are comprised of a set
of nested components, either device components or further
system components, and a scheduler to manage them.

MAKING SIMULATIONS
Tickit simulations are configured using a yaml file con-

taining the relevant devices and their graphing. The devices
are declared with their module pathing along with any initial
values for themselves or their adapters. For example, a initial
amplification value for an amplifier, or a port number for a
TCP adapter. The graphing is determined by the inputs field
on the devices, where the outputs of other devices can be
assigned. This file is used to build and run the simulation.

Devices
Devices are the user implemented code for the simula-

tion. There is a minor amount of required boilerplate for
devices; they must contain classes for inputs and outputs,
and an update method. The inputs and outputs are used for
wiring devices together within a simulation, and the update
function contains the user implemented code for how the
device should behave when it is updated.

Devices are stateful and hold the ”ground truth” of their
simulated condition. When an event reaches them it triggers
the update method which updates the state based on changes
from both simulated inputs and adapters. This change in
state can produce new output values. These new output
values are acknowledged by the scheduler and cause any
devices which depend on them to update in turn. The rest of
the device code is typically whatever device logic is needed
to support this core behaviour.

Adapters
Adapters control and read state from devices using a net-

work interface. They were designed to provide a simple way
for users to write device specific interfaces while avoiding
re-implementing standard I/O logic. Each device needs a
specific implementation of a given adapter which will be
paired with the required I/O to allow the adapter to be run
within the component.

There are currently four adapter types implemented within
Tickit:

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP109

TUPDP109

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

824

Software

Control Frameworks for Accelerator & Experiment Control



• TCP: An implementation that delegates the hosting of
an external messaging protocol to a TCP server and
utilises a regular expression pattern matching adapter
for message handling. The adapter registers its methods
as commands using a decorator, and attempts to match
the input against a regular expression.

• HTTP: An implementation that delegates the hosting
of HTTP requests to a server and utilises endpoints
specified by a HTTP adapter. The adapter registers its
methods as HTTP endpoints using a decorator.

• ZMQ: An adapter that publishes to a ZeroMQ [4] data
stream. This is a push only adapter and does not include
handling for incoming messages.

• EPICS: This adapter creates an EPICS [5] IOC with
records associated with attributes of the device. It can
be optionally initialised using an EPICS database file,
and customised once this is loaded. The IOC is created
using pythonSoftIOC [6], a python module developed
by Diamond Light Source to enable the python inter-
preter to run an EPICS IOC. This adapter implemen-
tation is particularly useful when simulating devices
that use hard IOC’s as in these cases it is not possible
to simulate the device and map it to use an instance of
the real IOC.

TICKIT DEVICES
Within Diamond we have started to develop a repository

of devices for the Tickit framework [7]. This currently con-
tains a few useful devices as well as the initial Eiger and
Zebra. These are undergoing development to increase their
functionality.

As well as improving the devices, there is ongoing effort
to deploy them within a larger end station simulation. This
simulation is currently composed of numerous Lewis devices
and custom simulations of specific devices, including an
EIGER and a Zebra. We are working to replace these with
corresponding Tickit devices.

SIMULATING AN EIGER
One of the most challenging devices implemented in

Tickit so far is Dectris’ Eiger detector, which is currently be-
ing adopted by several Diamond beamlines to enable a step
change in data acquisition rates. Eiger has already been in-
tegrated into our high-performance detector control system,
Odin [8]. This means that as long as we can keep the simu-
lated Eiger behaviour sufficiently close to the real thing, we
can deploy our Odin services (and our entire software stack
on top) against it with no modifications and thus maximize
the validity of our testing.

It was a significant undertaking despite only needing to
implement the features that Odin and our beamlines recog-
nise. This required us to simulate series triggering, both
internal and external, and ZeroMQ streaming. The most
important feature was the external series triggering, which
is the enabler for simulating hardware triggered scans; the
original design goal of Tickit.

Still left to develop are the event triggering modes (both
internal and external), the file writing module, and the moni-
toring module. There is also no facility yet to customize the
data the simulation produces, which is a requested feature.

SIMULATING A ZEBRA
The second key device in development is the Zebra. An

initial Zebra device has been implemented utilising a system
component to represent the device, and the nested device
components within to represent individual logic Blocks. A
depiction of the Zebra and the flow of signal through the
Blocks is depicted in Fig. 5.

The initial Zebra supports AND and OR Blocks in a static,
non-cyclic arrangement. Full implementation of the capa-
bilities of a Zebra will require live rewiring; being able to
change how the logic blocks are connected while the de-
vice is still running. This would require alteration of the
device graph while a simulation is running. It will also re-
quire the ability for an internal Block to use the output of
the Zebra as its input, potentially causing a cycle. Each of
these capabilities represent a significant challenge, with the
rewiring requirement needing further development of the
framework’s features.

The Zebra Blocks contain state which determines their
output behaviours for a given input, which can be initialised
with a value by the configuration file of the Zebra or set
via its TCP adapter. The Zebra also contains the state of
how the Blocks are arranged, and will require being able to
set and read this in the expected form over TCP when live
component rewiring is implemented.

Zebra blocks take 20 ns for their output signal to change in
response to their inputs changing, a behaviour implemented
with Tickit’s tick-based time system. This delay is also im-
plemented when changing the internal state of the block, and
is accomplished by caching the new output when a change
of the inputs is detected: it is hoped that a similar method
will allow for the cyclic requirements of the Zebra without
breaking the core assumptions of the framework.

Next steps in development of the zebra are to implement
further blocks; at least DIV, GATE, PULSE, QUAD; and
live rewiring.

FURTHER DEVELOPMENTS
Going forwards our efforts will be focused on developing

the Zebra device and providing any framework changes re-
quired to facilitate it. The most significant of these will be
the introduction of re-wirable graphs within system compo-
nents needed for on the fly block manipulation within the
Zebra.

Alongside this there will be efforts to extend the function-
ality of the Eiger, the details of which are expressed above,
and to produce an initial simulated PMAC device. Prelimi-
nary work has been done to explore the requirements of a
PMAC simulation however further work needs to be done
to produce a working device.

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP109

Software

Control Frameworks for Accelerator & Experiment Control

TUPDP109

825

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 5: The structure of the Zebra device showing the flow of signal through the Blocks.

There are also goals to enable the distributed use of Tickit
simulations. Tickit has been designed to allow the scheduler
and components, and any subset thereof, to run in different
processes. This allows us to make increasingly complex sim-
ulations by distributing the resource load. It also would allow
us to create containerised deployments of sets of devices,
configured for specific beamlines.

CONCLUSION
Tickit is a event driven hardware simulation framework

that supports multi-device simulations. The framework and
a number of devices for it have been developed to support the
simulation of hardware triggered scans. We have had success
integrating Tickit devices within our current simulations
and use them for testing in the development of our new
acquisition software stack.

The Tickit framework is in active development, with grad-
ual framework enhancements and smaller isolated devices
being created in addition to the larger goals described in
FURTHER DEVELOPMENTS. Achieving these goals
will provide us with the devices and features required to
further improve and expand our beamline simulations. This
in turn will provide us with greater testing capabilities and
will be a valuable asset in the development, maintenance
and debugging of our acquisition and controls tools.

REFERENCES
[1] D. Oram, M. Clarke, Lewis (Version 1.3.2),
https://github.com/ess-dmsc/lewis

[2] T. M. Cobb, Y. S. Chernousko, and I. S. Uzun, “ZEBRA: a
Flexible Solution for Controlling Scanning Experiments”, in
Proc. ICALEPCS’13, San Francisco, CA, USA, Oct. 2013,
paper TUPPC069, pp. 736–739.

[3] T. M. Cobb, I. Uzun, Y Chernousko, Zebra Technical Manual,
Diamond Light Source, 2014, https://github.com/
dls-controls/zebra/blob/master/documentation/
TDI-CTRL-TNO-042-Zebra-Manual.pdf

[4] The ZeroMQ authors, ZeroMQ: An open-source universal
messaging library, https://zeromq.org/

[5] EPICS, Experimental Physics and Industrial Control System,
Argonne National Laboratory, https://epics.anl.gov/

[6] M.Abbot, PythonSoftIOC (Version 4.4.0),
https://github.com/dls-controls/pythonSoftIOC

[7] A. Emery, tickit-devices (Version 0.3.0),
https://github.com/dls-controls/tickit-devices

[8] T. Nicholls, odin-control (Version 1.4.0),
https://github.com/odin-detector/odin-control

19th Int. Conf. Accel. Large Exp. Phys. Control Syst. ICALEPCS2023, Cape Town, South Africa JACoW Publishing

ISBN: 978-3-95450-238-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2023-TUPDP109

TUPDP109

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

826

Software

Control Frameworks for Accelerator & Experiment Control


